cho 4 chữ số a, b, c, d thỏa mãn điều kiện \(b^2\)= ac, \(c^2\)= bd. Chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào quy luật của các số trong hình A và B , hãy điền số thích hợp vào chỗ chấm trong hình C
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 3 \(\Rightarrow\) \(a^2;\)\(b^2\)chia 3 dư 1
khi đó \(a^2+b^2\) chia 3 dư 2 \(\Rightarrow\)\(c^2\) chia 3 dư 2 (vô lý)
\(\Rightarrow\)trường hợp \(a\)và \(b\) không chia hết cho 3 không xảy ra \(\Rightarrow\) \(abc\)\(⋮\)\(3\) \(\left(1\right)\)
+ Nếu \(a\)\(;\)\(b\) không chia hết cho 5 \(\Rightarrow\)\(a^2\) chia 5 dư 1 hoặc 4 cà \(b^2\) chia 5 dư 1 hoặc 4
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 2 (vô lí)
- Nếu \(a^2\) chia 5 dư 1 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\)\(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 1 \(\Rightarrow\) \(c^2\) chia 5 dư 0 \(\Rightarrow\) \(c\) \(⋮\)\(5\)
- Nếu \(a^2\) chia 5 dư 4 và \(b^2\) chia 5 dư 4 \(\Rightarrow\) \(c^2\) chia 5 dư 3 (vô lí). Vậy ta luôn tìm được một giá trị của \(a,\)\(b,\)\(c\)thỏa mãn \(abc\)\(⋮\)\(5\) \(\left(2\right)\)
+ Nếu \(a,\)\(b,\)\(c\) không chia hết cho 4 \(\Rightarrow\) \(a^2,\)\(b^2,\)\(c^2\) chia 8 dư 1 hoặc 4
khi đó \(a^2+b^2\) chia 8 dư \(0,\)\(2\)hoặc
\(\Rightarrow\) c2:5 dư 1,4. vô lý => a hoặc b hoặc c chia hết cho 4 (3)
Từ (1) (2) và (3) => abc chia hết cho 60
\(\frac{2a-b}{a+b}=\frac{2}{3}\)
\(\Leftrightarrow6a-3b=2a+2b\)
\(\Leftrightarrow6a-2a=2b+3b\)
\(\Leftrightarrow4a=5b\)
\(\frac{b-c+a}{2a-b}=\frac{2}{3}\)
\(\Leftrightarrow4a-2b=3b-3c+3a\)
\(\Leftrightarrow4a-3a=3b-3c+2b\)
\(\Leftrightarrow a=5b-3c\)
\(\Leftrightarrow a=4a-3c\)
\(\Leftrightarrow3a=3c\)
\(\Rightarrow a=c\)
\(\Rightarrow P=\frac{\left(4a+4a\right)^5}{\left(4a+4a\right)^2\left(a+3a\right)^3}=\frac{\left(8a\right)^5}{\left(8a\right)^2\left(4a\right)^3}=\frac{\left(8a\right)^3}{\left(4a\right)^3}=\frac{8^3}{4^3}=2^3=8\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
<=> \(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
<=>\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
<=>\(b.\frac{b+c-a-b}{\left(a+b\right)\left(b+c\right)}+d.\frac{d+a-c-d}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\frac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\left(c-a\right).\frac{b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}=0\)
<=> \(\orbr{\begin{cases}c-a=0\\b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\end{cases}}\)
<=>\(\orbr{\begin{cases}c=a\left(KTM\right)\\abc-acd+bd^2-b^2d=0\end{cases}}\)
<=>\(\left(b-d\right)\left(ac-bd\right)=0< =>\orbr{\begin{cases}b-d=0\\ac-bd=0\end{cases}< =>\orbr{\begin{cases}b=d\left(KTM\right)\\ac=bd\end{cases}}}\)
=> \(abcd=\left(ac\right)^2\) => \(abcd\)là số chính phương ( ĐPCM)
----Tk mình nha----
~~Hk tốt~~