K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(\left|x\right|\right)^2-m\left|x\right|+m^2-1=0\)

\(\text{Δ}=\left(-m\right)^2-4\left(m^2-1\right)=m^2-4m^2+4=-3m^2+4\)

Để phương trình có nghiệm duy nhất thì \(-3m^2+4=0\)

hay \(m\in\left\{\dfrac{2\sqrt{3}}{3};-\dfrac{2\sqrt{3}}{3}\right\}\)

b: Để hệ có nghiệm duy nhất thì \(\frac{1}{m}<>\frac{1}{-1}\)

=>m<>-1

c: Để hệ có nghiệm duy nhất thì m<>-1

\(\begin{cases}x+y=2\\ mx-y=1\end{cases}\Rightarrow\begin{cases}x+y+mx-y=2+1=3\\ x+y=2\end{cases}\)

=>\(\begin{cases}x\left(m+1\right)=3\\ x+y=2\end{cases}\Rightarrow\begin{cases}x=\frac{3}{m+1}\\ y=2-x=2-\frac{3}{m+1}=\frac{2m+2-3}{m+1}=\frac{2m-1}{m+1}\end{cases}\)

x-3y=5

=>\(\frac{3}{m+1}-\frac{3\left(2m-1\right)}{m+1}=5\)

=>3-3(2m-1)=5(m+1)

=>3-6m+3=5m+5

=>-6m+6=5m+5

=>-11m=-1

=>\(m=\frac{1}{11}\) (nhận)

d: xy<0

=>\(\frac{3}{m+1}\cdot\frac{2m-1}{m+1}<0\)

=>3(2m-1)<0

=>2m-1<0

=>\(m<\frac12\)

Kết hợp với m<>-1, ta được: \(\begin{cases}m<\frac12\\ m<>-1\end{cases}\)

e: x+2y>4

=>\(\frac{3}{m+1}+\frac{2\left(2m-1\right)}{m+1}>4\)

=>3+2(2m-1)>4(m+1)

=>3+4m-2>4m+4

=>1>4(sai)

=>m∈∅

f: Để x,y nguyên thì 3⋮m+1 và 2m-1⋮m+1

=>3⋮m+1 và 2m+2-3⋮m+1

=>3⋮m+1 và -3⋮m+1

=>3⋮m+1

=>m+1∈{1;-1;3;-3}

=>m∈{0;-2;2;-4}

a: Khi m=2 thì pt sẽ là \(-x-5=0\)

hay x=-5

b: Để phương trình có nghiệm duy nhất thì m-3<>0

hay m<>3

26 tháng 12 2021

\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

10 tháng 7 2016

can tui giup k

14 tháng 9 2021

\(a,x=-1\\ \Leftrightarrow1-2\left(m+1\right)+m^2-3m=0\\ \Leftrightarrow-1-5m+m^2=0\\ \Leftrightarrow m^2-5m-1=0\\ \Delta=25+4=29\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5+\sqrt{29}}{2}\\m=\dfrac{5-\sqrt{29}}{2}\end{matrix}\right.\)

\(b,\)Pt có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+12m>0\\ \Leftrightarrow20m+4>0\Leftrightarrow m>-\dfrac{1}{5}\)

\(c,\)Để pt có nghiệm duy nhất (nghiệm kép)

\(\Leftrightarrow\Delta=\left[2\left(m+1\right)\right]^2-4\left(m^2-3m\right)=0\\ \Leftrightarrow20m+4=0\\ \Leftrightarrow m=-\dfrac{1}{5}\)