K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2015

Bạn chỉ cần thay tọa độ của A vào ptđt là ra nhé (k=10)

9 tháng 12 2018

a, để đths y=(k-1)x+1  (k\(\ne\)1) đi qua A(-2,3) thì

3=(k-1)(-2)+1

<=> 3=-2k+2+1

<=> 0=-2k

<=>k=0( TM)

Vậy k=0 thì đths y=(k-1)x+1 đi qua A(-2;3)

b, Không có giá trị nào của k để đths y=(k-1)x+1 song song với đt y=2x+1 vì 1=1

21 tháng 11 2023

Phương trình hoành độ giao điểm của (d) và (d):

2x/5 + 1/2 = 3x/5 - 5/2

⇔ 3x/5 - 2x/5 = 1/2 + 5/2

⇔ x/5 = 3

⇔ x = 3.5

⇔ x = 15

⇒ y = 2.15/5 + 1/2 = 6 + 1/2 = 13/2

Thay x = 15; y = 13/2 vào (d) ta có:

15k + 7/2 = 13/2

⇔ 15k = 13/2 - 7/2

⇔ 15k = 3

⇔ k = 1/5

Vậy k = 1/5 thì (d); (d₁) và (d₂) đồng quy

a: Vì (d) vuông góc với (Δ) nên -a=-1

hay a=1

Vậy: (d): y=x+b

Thay x=1 và y=-5 vào (d), ta được: b+1=-5

hay b=-6

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}5x^2+4x+3=-3x+3\\y=-3x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(5x+7\right)=0\\y=-3x+3\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(0;3\right);\left(-\dfrac{7}{5};\dfrac{36}{5}\right)\right\}\)

a: Thay x=0 và y=0 vào (1), ta được:

k=0

c: Để (1)//\(y=\left(\sqrt{3}+1\right)x+3\), ta được:

\(\left\{{}\begin{matrix}k+1=\sqrt{3}+1\\k\ne3\end{matrix}\right.\Leftrightarrow k=\sqrt{3}\)

11 tháng 11 2016

a/ Gọi điểm cố định \(M\left(x_0;y_0\right)\)

Khi đó đường thẳng y = k(x+3)-7 đi qua M , tức \(k\left(x_0+3\right)-7-y_0=0\) 

Vì đường thẳng y = k(x+3)-7 luôn đi qua M nên \(\hept{\begin{cases}x_0+3=0\\-y_0-7=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=-3\\y_0=-7\end{cases}}\)

Vậy đường thẳng đã cho luôn đi qua điểm M(-3;-7)

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì họ đường thẳng (m+2)x + (m-3)y -m+8 = 0 luôn đi qua N nên : 

\(\left(m+2\right).x_0+\left(m-3\right).y_0-m+8=0\)

\(\Leftrightarrow m\left(x_0+y_0-1\right)+\left(2x_0-3y_0+8\right)=0\)

Ta có \(\hept{\begin{cases}x_0+y_0-1=0\\2x_0-3y_0+8=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy điểm cố định N(-1;2)

Câu còn lại bạn làm tương tự nhé ^^

12 tháng 11 2016

c/ Đơn giản thôi mà =)

Ta cũng gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Vì họ đường thẳng y=(2-k)x+k-5 đi qua M nên : 

\(y_0=\left(2-k\right)x_0+k-5\Leftrightarrow k\left(1-x_0\right)+\left(2x_0-y_0-5\right)=0\)

Ta có \(\hept{\begin{cases}1-x_0=0\\2x_0-y_0-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x_0=1\\y_0=-3\end{cases}}\)

Vậy điểm cố định là M(1;-3)

23 tháng 12 2018

a) (d) đi qua điểm (1;2)

<=> 2 = k + 1 + k

<=> 1 = 2k

<=> k = 0,5

Vậy k = 0,5 thì (d) đi qua (1;2)

b) Để (d) // đgth y = 2x + 3

\(\Leftrightarrow\hept{\begin{cases}k+1=2\\k\ne3\end{cases}\Leftrightarrow\hept{\begin{cases}k=1\\k\ne3\end{cases}\Rightarrow}k=1}\)

Vậy k =1 thì (d) // đgth y = 2x +3

c) Gọi điểm cố định là (d) đi qua là (x0;y0)

Ta có y0 = ( k +1) x0 + k

<=> y0 = kx0 + x0+k

<=> y0 - x0 - k ( x0 + 1) = 0 \(\forall\)k

Để pt nghiệm đúng với mọi k <=> \(\hept{\begin{cases}x_0+1=0\\y_0-x_0=0\end{cases}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=-1\end{cases}}}\)

Điểm cố định (d) luôn đi qua là ( -1;-1)

a: Thay x=0 và y=0 vào \(\left(d\right)\), ta được:

k=0

 

18 tháng 11 2019

Đường thẳng y = (k + 1)x + k có dạng là hàm số bậc nhất đi qua gốc tọa độ nên k = 0

Vậy hàm số có dạng: y = x