Giải phương trình:
\(3x^3-19x^2+33x-9=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{9x^2+33x+28}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{12x^2+19x-21}\)
\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{\left(3x+7\right)\left(4x-3\right)}\)
\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}-5\sqrt{3x+4}=\sqrt{\left(3x+7\right)\left(4x-3\right)}-5\sqrt{4x-3}\)
\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)=\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)\)
\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)-\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x+7}-5\right)\left(\sqrt{3x+4}-\sqrt{4x-3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3x+7}=5\\\sqrt{3x+4}=\sqrt{4x-3}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x+7=25\\3x+4=4x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\) (thỏa mãn). Suy ra tổng các nghiệm của pt là \(6+7=13\)
Ta có: \(C=\frac{3x^2-7x^2-12+45}{3x^3-19x^2+33x-9}\) ĐKXĐ: x khác 3, 1/3
\(=\frac{\left(x-3\right)^2\left(2x+5\right)}{\left(x-3\right)^2\left(3x-1\right)}\)
\(=\frac{2x+5}{3x-1}\)
Để C>0, ta có:
-5/2<x<1/3 (thỏa mãn ĐKXĐ)
A=\(\dfrac{3x^3-14x^2+3x+36}{3x^3-19x^2+33x-9}\)
=>A \(=\dfrac{\left(x-3\right)\left(3x^2-5x-12\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
=>A=\(\dfrac{\left(x-3\right)^2\left(3x+4\right)}{\left(x-3\right)^2\left(3x-1\right)}\)
=>A=\(\dfrac{3x+4}{3x-1}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
\(=\frac{\left(x-\frac{2}{5}\right)\left(x+3\right)}{\left(x+\frac{1}{3}\right)\left(x+3\right)}\)
\(=\frac{x-\frac{2}{5}}{x+\frac{1}{3}}\)
=\(\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
=\(\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
=\(\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
=\(\frac{2x^2-6x+5x-15}{3x^2-9x-x+3}\)
=\(\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
=\(\frac{2x+5}{3x-1}\)
\(3x^3-19x^2+33x-9=0\)
\(\Leftrightarrow\left(3x^3-18x^2+27x\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow3x\left(x^2-6x+9\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là S = \(\left\{\dfrac{1}{3};3\right\}\)