K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

ap dung BDT co si cho 2 so ko am

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}\)

<=>\(x+\dfrac{1}{x}\ge2\) (dpcm)

NV
23 tháng 1 2021

Biến đổi tương đương:

\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

Cách khác so với anh Nguyễn Việt Lâm

Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)  (đpcm)

NV
27 tháng 3 2021

Ta có:

\(VT=2+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{y}{z}+\dfrac{x}{z}+\dfrac{z}{x}\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Ta có:

\(\dfrac{x}{y}+\dfrac{x}{y}+1\ge3\sqrt[3]{\dfrac{x^2}{y^2}}\) 

Tương tự ...

Cộng lại ta có:

\(2\left(\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\right)+6\ge3\left(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\right)\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}\ge\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\)

Do đó ta chỉ cần chứng minh:

\(\sqrt[3]{\dfrac{x^2}{y^2}}+\sqrt[3]{\dfrac{y^2}{x^2}}+\sqrt[3]{\dfrac{y^2}{z^2}}+\sqrt[3]{\dfrac{z^2}{y^2}}+\sqrt[3]{\dfrac{z^2}{x^2}}+\sqrt[3]{\dfrac{x^2}{z^2}}\ge\dfrac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

\(\Leftrightarrow\left(\sqrt[3]{\dfrac{x}{y}}-\sqrt[3]{\dfrac{x}{z}}\right)^2+\left(\sqrt[3]{\dfrac{y}{x}}-\sqrt[3]{\dfrac{y}{z}}\right)^2+\left(\sqrt[3]{\dfrac{z}{x}}-\sqrt[3]{\dfrac{z}{y}}\right)^2\ge0\) (luôn đúng)

NV
30 tháng 12 2018

Áp dụng BĐT: \(\dfrac{a^n+b^n}{2}\ge\left(\dfrac{a+b}{2}\right)^n\Rightarrow a^n+b^2\ge2\left(\dfrac{a+b}{2}\right)^n\):

\(\left(1+\dfrac{x}{y}\right)^{2018}+\left(1+\dfrac{y}{x}\right)^{2018}\ge2\left(\dfrac{2+\dfrac{x}{y}+\dfrac{y}{x}}{2}\right)^{2018}\ge2\left(\dfrac{2+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}}{2}\right)^{2018}=2^{2019}\)

Dấu "=" xảy ra khi \(x=y\)

30 tháng 12 2018

phiền bạn chứng minh bổ đề lun đc không ???

13 tháng 7 2021

ặt x+1=tx+1=t thì t>0t>0 và  x=-1+tx=1+t. Ta có

           2x+\dfrac{1}{\left(x+1\right)^2}=2\left(-1+t\right)+\dfrac{1}{t^2}=-2+t+t+\dfrac{1}{t^2}2x+(x+1)21=2(1+t)+t21=2+t+t+t21

                                                                       \ge-2+3\sqrt[3]{t.t.\dfrac{1}{t^2}}=-2+3=12+33t.t.t21=2+3=1  

29 tháng 8 2021

1

 

5 tháng 11 2018

Ta có: \(x+\frac{1}{x}-2=\frac{x^2}{x}+\frac{1}{x}-\frac{2x}{x}\)

\(=\frac{x^2+1-2x}{x}=\frac{x\left(x-2\right)+1}{x}\)

Lại có \(x>0\Rightarrow x\left(x-2\right)+1\ge0\)

\(\Rightarrow\frac{x\left(x-2\right)+1}{x}\ge0\)

\(\Rightarrow x+\frac{1}{x}-2\ge0\)

\(\Rightarrow x+\frac{1}{x}\ge2\)\(\left(đpcm\right)\)

5 tháng 11 2018

Minh Tâm Bạn tự đặt câu hỏi rồi tự giải có ý nghĩa gì không ???

19 tháng 4 2018

Câu hỏi của Nguyễn Thị Hằng - Toán lớp 8 | Học trực tuyến

6 tháng 11 2017

Áp dụng BĐT cô-si ta có : \(x\)+\(\frac{1}{x}\)\(\ge\)\(2\sqrt{x.\frac{1}{x}}=2\sqrt{1}=2\)\(\Rightarrow\)ĐPCM.

10 tháng 11 2017

cảm ơn rất nhiều! Nguyễn Văn An