K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

\(A=\dfrac{32}{x^2+2x+4}=\dfrac{32}{x^2+2x+1+3}=\dfrac{32}{\left(x^2+2x+1\right)+3}\)

= \(\dfrac{32}{\left(x+1\right)^2+3}\)

do (x+1)2 ≥ 0 ∀x

=> (x+1)2+3 ≥ 3

=> \(\dfrac{32}{\left(x+1\right)^2+3}\le\dfrac{32}{3}\)

=> A ≤ \(\dfrac{32}{3}\)

max A= \(\dfrac{32}{3}\) dấu "=" xảy ra khi

x+1=0

=> x=-1

vậy max A= \(\dfrac{32}{3}\) khi x=-1

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)

23 tháng 5 2023

Biểu thức nào em?

24 tháng 5 2023

cả hai ạ

NV
5 tháng 4 2021

a.

\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)

Dấu "=" xảy ra khi \(x=2013\)

b.

\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)

\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)

\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)

\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)

5 tháng 4 2021

em cảm ơn ạ

1 tháng 1 2021

Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).

Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)

\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).

Vậy...

Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.

13 tháng 2 2023

Đỉnh cao pạn ưi

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Bạn xem lại xem đã biết biểu thức đúng chưa vậy?

24 tháng 3 2023

ko có c hả bạn?

 

NV
10 tháng 3 2021

\(A=1-\dfrac{2}{x}+\dfrac{1975}{x^2}=1975\left(\dfrac{1}{x}-\dfrac{1}{1975}\right)^2+\dfrac{1974}{1975}\ge\dfrac{1974}{1975}\)

\(A_{min}=\dfrac{1974}{1975}\) khi \(x=1975\)

NV
22 tháng 1 2024

Đặt \(x-1=t\Rightarrow x=t+1\)

\(A=\dfrac{2\left(t+1\right)^2-6\left(t+1\right)+5}{t^2}=\dfrac{2t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+2=\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

\(A_{min}=1\) khi \(t=1\Rightarrow x=2\)