giải BPT: 3(x-1)/(x+2)< 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x-1)(x-3)-3x+1≤(x-1)(x+3)+x2-5
<=> 2x2-6x-x+3-3x+1≤x2+3x-x-3+x2-5
<=> -12x≤-6
<=>x≥\(\frac{1}{2}\)
Vậy nghiệm của bpt là S=[\(\frac{1}{2}\);+∞)
ĐKXĐ: \(x^2+x-1\ge0\)
\(\Rightarrow3x^2-x+1>3\sqrt{\left(x^2-x+1\right)\left(x^2+x-1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow2a^2+b^2>3ab\)
\(\Leftrightarrow\left(2a-b\right)\left(a-b\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}2a< b\\a>b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2\sqrt{x^2-x+1}< \sqrt{x^2+x-1}\\\sqrt{x^2-x+1}>\sqrt{x^2+x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2-x+1\right)< x^2+x-1\\x^2-x+1>x^2+x-1\end{matrix}\right.\)
\(\Leftrightarrow...\) (nhớ kết hợp ĐKXĐ ban đầu)
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)
\(x\) | \(-\infty\) \(-1\) \(\dfrac{2}{3}\) \(3\) \(+\infty\) |
\(x-3\) | - | - | - 0 - |
\(x+1\) | - 0 + | + | + |
\(2-3x\) | + | + 0 - | - |
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right).\) | + 0 - 0 + 0 + |
Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)
\(2x+\frac{x}{2}>\frac{x+2}{3}-1\)
\(\Leftrightarrow6\cdot2x+3\cdot x>2\left(2+x\right)-1\cdot6\)
\(\Leftrightarrow12x+3x-4-2x+6>0\)
\(\Leftrightarrow13x+2>0\Leftrightarrow x>-\frac{2}{13}\)
Vậy tập nghiệm của bất phương trình là : S = { \(\frac{-2}{13}\)}
bạn sửa lại giúp mk là S = { x / x> -2/3 } viết sai nhưng chưa sửa kịp mog bạn thông cảm
a) \(x\in\left(\frac{1}{2}-\frac{\sqrt{25\ln3+8\ln2}}{2\sqrt{\ln3}};\frac{\sqrt{25\ln3+8\ln2}}{2\sqrt{\ln3}}+\frac{1}{2}\right)\)
b) 3x2 - x - 6 - 1 = 0
x = -2
x = 3
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
\(\dfrac{3\left(x-1\right)}{x+2}< 3\)
⇔ \(\dfrac{3x-3}{x+2}-3< 0\)
⇔ \(\dfrac{3x-3-3x-6}{x+2}< 0\)
⇔ \(\dfrac{-9}{x+2}\) < 0
Do : - 9 < 0
⇒ x + 2 > 0
⇒ x > - 2
KL.....
\(\dfrac{3\left(x+1\right)}{x+2}< 3\)
\(\Leftrightarrow\dfrac{3\left(x+1\right)}{x+2}-3< 0\)
\(\Leftrightarrow\dfrac{3x+3-3\left(x+2\right)}{x+2}< 0\)
\(\Leftrightarrow\dfrac{-3}{x+2}< 0\)
Vì -3 < 0
\(\Rightarrow x+2>0\)
\(\Leftrightarrow x>-2\)
Vậy BPT có nghiệm x > - 2