Cho đường tròn ( O;R ) với dây CD cố định . Điểm M thuộc tia đối tia DC . Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn ( O;R ) ( A thuộc cung lớn CD ) . Gọi I là trung điểm của CD ; OM cắt AB tại H . Tia OI cẳ AB tại K; nối AB cắt CD tại E .
a . Chứng minh 4 điểm M,H,I,K cùng thuộc một đường tròn
b . Chứng minh ME.MI = MA2
c . Xác định vị trí của M để tam giác MAB đều
d . Chứng minh KC là tiếp tuyến của đường tròn ( O;R )
a: Xét (O) có
AM là tiếp tuyến
BM là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM\(\perp\)AB
Xét tứ giác MHIK có \(\widehat{MHK}=\widehat{MIK}=90^0\)
nên MHIK là tứ giác nội tiếp
b: Xét ΔMAE và ΔMIA có
góc MAE=góc MIA
góc AME chung
Do đó: ΔMAE\(\sim\)ΔMIA
Suy ra: MA/MI=ME/MA
hay \(MA^2=ME\cdot MI\)