K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

\(A=\dfrac{x-2}{x^3-x^2-x-2}=\dfrac{x-2}{x^3-1-\left(x^2+x+1\right)}=\dfrac{x-2}{\left(x-1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\dfrac{x-2}{\left(x^2+x+1\right)\left(x-1-1\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\A=\dfrac{1}{x^2+x+1}\end{matrix}\right.\) \(\Leftrightarrow A=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(A\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

GTLN A =4/3 khi x=-1/2

Bài 2:

\(A=\dfrac{2}{-x^2-2x-2}=\dfrac{-2\left(-x^2-2x-2\right)-2x^2-4x-2}{-x^2-2x-2}\) \(=-2+\dfrac{2\left(x+1\right)^2}{-x^2-2x-2}\ge-2\)

  Dấu bằng xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

  Vậy \(A_{Min}=-2\) khi \(x=-1\)

Bài 1:

a) Ta có: \(2x^2-6=0\)

\(\Leftrightarrow2x^2=6\)

\(\Leftrightarrow x^2=3\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Vậy: \(S=\left\{\sqrt{3};-\sqrt{3}\right\}\)

27 tháng 6 2021

`A=(9(x-2)+18)/(2-x)+2/x`

`=-9+18/(2-x)+2/x`

`=-9+2(9/(2-x)+1/x)`

Áp dụng bđt cosi-schwarts ta có:

`9/(2-x)+1/x>=(3+1)^2/(2-x+x)=8`

`=>A>=16-9=7`

Dấu "=" xảy ra khi `3/(2-x)=1/x`

`<=>3x=2-x`

`<=>4x=2<=>x=1/2(tm)`

b

`y=x/(1-x)+5/x`

`=(x-1+1)/(1-x)+5/x`

`=1/(1-x)+5/x-1`

Áp dụng cosi-schwarts ta có:

`1/(1-x)+5/x>=(1+sqrt5)^2/(1-x+x)=(1+sqrt5)^2=6+2sqrt5`

`=>y>=5+2sqrt5`

Dấu "=" xảy ra khi `1/(1-x)=sqrt5/x`

`<=>x=sqrt5-sqrt5x`

`<=>x(1+sqrt5)=sqrt5`

`<=>x=sqrt5/(sqrt5+1)=(sqrt5(sqrt5-1))/(5-1)=(5-sqrt5)/4`

`c)C=2/(1-x)+1/x`

Áp dụng bđt cosi schwarts ta có:

`C>=(sqrt2+1)^2/(1-x+x)=3+2sqrt2`

Dấu "=" xảy ra khi `sqrt2/(1-x)=1/x`

`<=>sqrt2x=1-x`

`<=>x(sqrt2+1)=1`

`<=>x=1/(sqrt2+1)=(sqrt2-1)/(2-1)=sqrt2-1`

27 tháng 6 2021

cho hỏi là câu a sao lại thế ở mấy dòng đầu ạ

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

3 tháng 9 2021

Mk cần đáp án gấp ạ.(khoảng 20-30p)gianroi

NV
8 tháng 1 2021

\(A=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{\dfrac{8x^2}{x^2}}=6\)

\(A_{min}=6\) khi \(x=1\)

\(B=x^3+\dfrac{3}{x}=x^3+\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}\ge4\sqrt[4]{\dfrac{x^3}{x^3}}=4\)

\(B_{min}=4\) khi \(x=1\)

12 tháng 3 2021

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

20 tháng 3 2021

sau 12(1√yz+1√zx+1√xy)≤12(1x+1y+1z)=3/2 vậy ạ

17 tháng 4 2022

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

17 tháng 4 2022

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2