K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

\(1,a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+2bc+c^2\Leftrightarrow b^2+c^2=a^2-2bc\)

Tương tự: \(\left\{{}\begin{matrix}a^2+b^2=c^2-2ab\\c^2+a^2=b^2-2ac\end{matrix}\right.\)

\(\Leftrightarrow N=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ca}+\dfrac{c^2}{c^2-c^2+2ac}\\ \Leftrightarrow N=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{a^3+b^3+c^3-3abc+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\\ \Leftrightarrow N=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

26 tháng 10 2021

Sửa \(\le\) thành \(\ge\) nha bạn

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)

Ta có \(\dfrac{a^2}{a+bc}=\dfrac{a^3}{a^2+abc}=\dfrac{a^3}{a^2+ab+bc+ca}=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}\)

Tương tự: \(\left\{{}\begin{matrix}\dfrac{b^2}{b+ca}=\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}\\\dfrac{c^2}{c+ba}=\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\end{matrix}\right.\)

Áp dụng BĐT cosi:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3}{4}a\)

\(\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{a+b}{8}+\dfrac{b+c}{8}\ge3\sqrt[3]{\dfrac{b^3}{64}}=\dfrac{3}{4}b\)

\(\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}+\dfrac{b+c}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{c^3}{64}}=\dfrac{3}{4}c\)

Cộng VTV:

\(\Leftrightarrow VT+\dfrac{a+b}{8}+\dfrac{a+c}{8}+\dfrac{b+c}{8}\ge\dfrac{3}{4}\left(a+b+c\right)\\ \Leftrightarrow VT\ge\dfrac{3\left(a+b+c\right)}{4}-\dfrac{2\left(a+b+c\right)}{8}\\ \Leftrightarrow VT\ge\dfrac{a+b+c}{4}\)

Dấu \("="\Leftrightarrow a=b=c=3\)

6 tháng 4 2017

Bài 1:

Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)

Ta sẽ chứng minh nó là GTLN

Thật vậy ta cần chứng minh

\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)

\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)

\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)

\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)

\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng theo vế ta có:

\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)

Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng

Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)

Bài 3:

Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là

\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:

\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)

Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)

\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM

Đẳng thức xảy ra khi \(a=b=c=1\)

T/b:Vâng, rất giỏi :GT8:

4 tháng 4 2017

lần sau đăng từng câu 1 dc ko bn :)

8 tháng 12 2018

Câu hỏi t/tự

15 tháng 4 2023

a) Gọi d là ƯCLN(n + 1; n + 2)

\(\Rightarrow n+1⋮d\)

\(n+2⋮d\)

\(\Rightarrow\left[\left(n+2\right)-\left(n+1\right)\right]⋮d\)

\(\Rightarrow\left(n+2-n-1\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{n+2}\) là phân số tối giản

b) Gọi d là ƯCLN(n + 1; 3n + 4)

\(\Rightarrow n+1⋮d\) và \(3n+4⋮d\)

Do \(n+1⋮d\Rightarrow3n+3⋮d\)

\(\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)

\(\Rightarrow\left(3n+4-3n-3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{n+1}{3n+4}\) là phân số tối giản

c) Gọi d là ƯCLN(3n + 2; 5n + 3)

\(\Rightarrow3n+2⋮d\) và \(5n+3⋮d\)

Do \(3n+2⋮d\)

\(\Rightarrow5\left(3n+2\right)⋮d\)

\(\Rightarrow15n+10⋮d\)   (1)

Do \(5n+3⋮d\)

\(\Rightarrow3\left(5n+3\right)⋮d\)

\(\Rightarrow15n+9⋮d\)   (2)

Từ (1) và (2) \(\Rightarrow\left[\left(15n+10\right)-\left(15n+9\right)\right]⋮d\)

\(\Rightarrow\left(15n+10-15n-9\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{3n+2}{5n+3}\) là phân số tối giản

d) Gọi d là ƯCLN(12n + 1; 30n + 2)

\(\Rightarrow12n+1⋮d\) và \(30n+2⋮d\)

Do \(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)   (3)

Do \(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮2\)   (4)

Từ (3 và (4) \(\Rightarrow\left[\left(60n+5\right)-\left(60n+4\right)\right]⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\dfrac{12n+1}{30n+2}\) là phân số tối giản

 

a: Gọi d=ƯCLN(n+1;n+2)

=>n+2-n-1 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

b: Gọi d=ƯCLN(3n+4;n+1)

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

c: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

d: Gọi d=ƯCLN(12n+1;30n+2)

=>60n+5-60n-4 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

11 tháng 12 2018

Áp dụng BĐT Cauchy - Schwarz dạng Engel:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

4 tháng 6 2018

\(\dfrac{1}{a^2+b^2+2}+\dfrac{1}{b^2+c^2+2}+\dfrac{1}{c^2+a^2+2}\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{a^2+b^2}{a^2+b^2+2}+\dfrac{b^2+c^2}{b^2+c^2+2}+\dfrac{c^2+a^2}{c^2+a^2+2}\ge\dfrac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT\ge\dfrac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a^2+b^2+c^2\right)+6}\)

\(\ge\dfrac{\sqrt{3\left(a^2b^2+b^2c^2+a^2c^2\right)}+2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\)

\(\ge\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\)

Cần chứng minh \(\dfrac{2\left(a^2+b^2+c^2\right)+ab+bc+ca}{a^2+b^2+c^2}\ge\dfrac{3}{2}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge0\) *luôn đúng*

6 tháng 6 2018

Em có cách khác :v

\(\dfrac{1}{a^2+b^2+2}\le\dfrac{1}{\dfrac{\left(a+b\right)^2}{2}+2}=\dfrac{1}{\dfrac{\left(3-c\right)^2}{2}+2}\\ =\dfrac{2}{\left(3-c\right)^2+4}=\dfrac{2}{c^2-6c+13}\)

Ta cần CM:

\(\dfrac{2}{c^2-6c+13}\le\dfrac{1}{8}c+\dfrac{1}{8}\\ \Leftrightarrow\left(3-c\right)\left(c-1\right)^2\ge0\left(luon;dung\right)\\ \Rightarrow A\le\dfrac{1}{8}a+\dfrac{1}{8}+\dfrac{1}{8}b+\dfrac{1}{8}+\dfrac{1}{8}c+\dfrac{1}{8}=\dfrac{3}{4}\)

Nguồn : Anh hùng