1. Chứng minh các bất đẳng thức sau:
a. \(a^2+b^2+c^2\ge ab+bc+ca\)
b. \(a^2+b^2+c^2+d^2\ge ab+bc+cd+da\)
c. \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
2. Cho x,y,z không âm. Cmr: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)
3. Cho a+b+c=1. Cm: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
1.b
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung
2 . ta có
\(\left(x-y\right)^2\ge0\)
<=> x2-2xy+y2 ≥ 0
<=> x2+4xy-2xy+y2 ≥ 4xy
<=> x2+2xy+y2 ≥ 4xy
<=> (x+y)2 ≥ 4xy
CMTT
(y+z)2 ≥ 4yz
(z+x)2 ≥ 4zx
nhân các vế của bđt ta có
[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2
<=> (x+y)(y+z)(z+x) ≥ 8xyz