K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0\)

\(\text{Xét hiệu: }\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)

\(\Leftrightarrow c^2=ab+ac+bc+c^2\Leftrightarrow ab+bc+ac=0\)(đúng với giải thiết)

Vậy \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

22 tháng 9 2019

Qui đồng chứng minh tương đương là ra

NV
22 tháng 9 2019

\(a+b=2c\Rightarrow\left\{{}\begin{matrix}c=\frac{a+b}{2}\\a-c=c-b\end{matrix}\right.\)

\(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{c}}{a-c}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-c}-\frac{\sqrt{b}-\sqrt{c}}{a-c}\)

\(=\frac{\sqrt{a}-\sqrt{b}}{a-c}=\frac{\sqrt{a}-\sqrt{b}}{a-\frac{a+b}{2}}=\frac{2\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{2}{\sqrt{a}+\sqrt{b}}\)

NV
15 tháng 5 2020

Số dương thì sao \(a+b+c=0\) được? Chắc là \(a+b+c=1\) mới đúng

Khi đó:

\(VT=\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}=\frac{2a}{2\sqrt{a\left(b+c\right)}}+\frac{2b}{2\sqrt{b\left(a+c\right)}}+\frac{2c}{2\sqrt{c\left(a+b\right)}}\)

\(VT\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Dấu "=" không xảy ra nên:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\)

20 tháng 8 2015

biến dổi tương đương

cộng trừ VT\(\sqrt{a},\sqrt{b},\sqrt{c}\)

Quy đống lên ta có

\(\left(a+b+c\right)\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)-\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)bạn quy đồng lên rùi lm tiep

19 tháng 4 2020

\(VT=\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(c+a\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(b+c\right)\left(c+a\right)}}\)

\(=\sqrt{\frac{a}{a+b}.\frac{a}{c+a}}+\sqrt{\frac{b}{a+b}.\frac{b}{b+c}}+\sqrt{\frac{c}{b+c}.\frac{c}{c+a}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{b+c}+\frac{c}{c+a}\right)\)

\(=\frac{1}{2}.3=\frac{3}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)