Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\)
\(a,\) Sửa: \(A=10^n+72n-1⋮81\)
Với \(n=1\Leftrightarrow A=10+72-1=81⋮81\)
Giả sử \(n=k\Leftrightarrow A=10^k+72k-1⋮81\)
Với \(n=k+1\Leftrightarrow A=10^{k+1}+72\left(k+1\right)-1\)
\(A=10^k\cdot10+72k+72-1\\ A=10\left(10^k+72k-1\right)-648k+81\\ A=10\left(10^k+72k-1\right)-81\left(8k-1\right)\)
Ta có \(10^k+72k-1⋮81;81\left(8k-1\right)⋮81\)
Theo pp quy nạp
\(\Rightarrow A⋮81\)
\(b,B=2002^n-138n-1⋮207\)
Với \(n=1\Leftrightarrow B=2002-138-1=1863⋮207\)
Giả sử \(n=k\Leftrightarrow B=2002^k-138k-1⋮207\)
Với \(n=k+1\Leftrightarrow B=2002^{k+1}-138\left(k+1\right)-1\)
\(B=2002\cdot2002^k-138k-138-1\\ B=2002\left(2002^k-138k-1\right)+276138k+1863\\ B=2002\left(2002^k-138k-1\right)+207\left(1334k+1\right)\)
Vì \(2002^k-138k-1⋮207;207\left(1334k+1\right)⋮207\)
Nên theo pp quy nạp \(B⋮207,\forall n\)
\(2,\)
\(a,\) Sửa đề: CMR: \(1\cdot2+2\cdot3+...+n\left(n+1\right)=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Đặt \(S_n=1\cdot2+2\cdot3+...+n\left(n+1\right)\)
Với \(n=1\Leftrightarrow S_1=1\cdot2=\dfrac{1\cdot2\cdot3}{3}=2\)
Giả sử \(n=k\Leftrightarrow S_k=1\cdot2+2\cdot3+...+k\left(k+1\right)=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}\)
Với \(n=k+1\)
Cần cm \(S_{k+1}=1\cdot2+2\cdot3+...+k\left(k+1\right)+\left(k+1\right)\left(k+2\right)=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Thật vậy, ta có:
\(\Leftrightarrow S_{k+1}=S_k+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(k+2\right)}{3}+\left(k+1\right)\left(k+2\right)\\ \Leftrightarrow S_{k+1}=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{3}\)
Theo pp quy nạp ta có đpcm
\(b,\) Với \(n=0\Leftrightarrow0^3=\left[\dfrac{0\left(0+1\right)}{2}\right]^2=0\)
Giả sử \(n=k\Leftrightarrow1^3+2^3+...+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Với \(n=k+1\)
Cần cm \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy, ta có
\(1^3+2^3+...+k^3+\left(k+1\right)^3\\ =\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\\ =\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}\\ =\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Theo pp quy nạp ta được đpcm
a: \(=n^3+2n^2-3n^2-6n+n+2-n^3+2\)
\(=-n^2+5n\)
Cái này nếu n=1 thì ko thỏa mãn nha bạn
b: \(=6n^2+30n+n+5-6n^2+30n-10n+50\)
\(=49n+55\)
Nếu n là số lẻ thì 49n+55 chia hết cho 2
Còn nếu n là số chẵn thì 49n+55 ko chia hết cho 2 nha bạn
\(A=\sqrt[]{1+2+3+...+\left(n-1\right)+n+...+3+2+1}\)
Ta có :
\(1+2+3+...+\left(n-1\right)=\left(n-1\right)+...+3+2+1=\left[\left(n-1\right)-1\right]+1\left(n-1+1\right):2\)
\(=\dfrac{\left(n-1\right)n}{2}\)
\(\Rightarrow A=\sqrt[]{\dfrac{\left(n-1\right)n}{2}.2+n}\)
\(\Rightarrow A=\sqrt[]{\left(n-1\right)n+n}\)
\(\Rightarrow A=\sqrt[]{n^2-n+n}\)
\(\Rightarrow A=\sqrt[]{n^2}\)
\(\Rightarrow A=n\left(n>0\right)\)
\(\Rightarrow dpcm\)
1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó
2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3.
Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)
Ta có 2 TH sau:
- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)
\(\Rightarrow\) Tích đã cho chia hết 12
- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)
3. Với \(n=1\) thỏa mãn
Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)
\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)
Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)
Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)
TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)
\(\Rightarrow n=10m+4\)
TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)
Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5
Bạn ơi đề thiếu cái gì đó rùi nha !
Vì nếu ta thay n lẻ thì :
n^2 cũng lẻ => n^2-2 lẻ => (n^2-2)^2 lẻ
=> [n.(n^2-2)^2] lẻ nên ko thể chia hết cho 10 là số chẵn
n(n2 - 2)2 - n3
=n5 - 4n3 + 4n - n3
=n(n4 - 5n2 + 4)
=n[(n4 - 4n2) - (n2 - 4)]
=n[n2(n-2)(n+2) - (n-2)(n+2)]
=n(n-2)(n+2)(n-1)(n+1)
Do n(n-2)(n+2)(n-1)(n+1) là tích của 5 số nguyên liên tiếp nên chắc chắn sẽ có 1 thừa số chia hết cho 5 và ít nhất 2 thừa số chi hết cho 2. Từ đó => [n(n2 - 2) - n3] ⋮ 10 với mọi n nguyên.
{Có thể giải thích đơn giản hơn là tích của 5 số nguyên liên tiếp thì chia hết cho 120. Từ đó cũng suy ra nó chia hết cho 10}.