Mọi người giải dùm mình hai bài toán nâng cao này với, cảm ơn trước ạ.
1/ Giải phương trình bằng cách đặt ẩn phụ u,v (không giải bằng cách nhân lượng liên hợp ạ, tại em giải rồi): √(2x²+x+9) + √(2x²-x+1) = x+4.
2/ Giải phương trình bằng cách nhân lượng liên hợp hoặc đặt ẩn phụ: √(3x²-5x+1) - √(3x²-3x-3) = √(x²-2) - √(x²-3x+4).
Mình cảm ơn mọi người trước ạ.
Câu 1)
\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)
ĐKXĐ:.......
Đặt \(\left\{\begin{matrix} \sqrt{2x^2+x+9}=a\\ \sqrt{2x^2-x+1}=b\end{matrix}\right.(a,b\geq 0)\)
\(\Rightarrow \left\{\begin{matrix} 2x^2+x+9=a^2\\ 2x^2-x+1=b^2\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2x+8\)
Như vậy, pt tương đương:
\(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow (a+b)\left(1-\frac{a-b}{2}\right)=0(1)\)
Thấy rằng : \(a=\sqrt{2(x+\frac{1}{4})^2+\frac{71}{8}}>0\);
\(b=\sqrt{2x^2-x+1}=\sqrt{2(x-\frac{1}{4})^2+\frac{7}{8}}>0\)
Do đó: \(a+b>0(2)\)
Từ \((1); (2)\Rightarrow 1-\frac{a-b}{2}=0\)
\(\Leftrightarrow a-b=2\)
\(\Rightarrow \sqrt{2x^2+x+9}=\sqrt{2x^2-x+1}+2\)
\(\Rightarrow 2x^2+x+9=2x^2-x+1+4+4\sqrt{2x^2-x+1}\) (bình phương)
\(\Rightarrow x+2=2\sqrt{2x^2-x+1}\)
\(\Rightarrow x^2+4x+4=4(2x^2-x+1)\)
\(\Rightarrow 7x^2-8x=0\Leftrightarrow x=0\) hoặc \(x=\frac{8}{7}\)
Thử lại thấy thỏa mãn.
Câu 2:
ĐKXĐ:.....
Thực hiện liên hợp.
\(\sqrt{3x^2-5x+1}-\sqrt{3x^2-3x-3}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow \frac{3x^2-5x+1-(3x^2-3x-3)}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{x^2-2-(x^2-3x+4)}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow \frac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow (x-2)\left(\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\frac{2}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\right)=0\)
Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó: \(x-2=0\Leftrightarrow x=2\)
Thử lại thấy thỏa mãn.
Vậy \(x=2\)