Cho tam giác ABC, có Aˆ = a^o. Các đường trung trực của cạnh AB, AC cắt nhau tại điểm I. Gọi D,E lần lượt là trung điểm của AB, AC.
a) Chứng minh △IDA =△IDB
b) Tính BIC .
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
16 tháng 12 2022
a: Xét ΔAMO vuông tại M và ΔANO vuông tại N có
AO chung
AM=AN
Do đó: ΔAMO=ΔANO
=>góc MAO=góc NAO
=>AO là phân giác của góc MAN
b: OB=OA
OA=OC
Do đó: OB=OC
c: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
31 tháng 10 2021
a: Ta có: I và D đối xứng nhau qua AB
nên AB là đường trung trực của DI
Suy ra: AD=AI
hay AB là tia phân giác của \(\widehat{IAD}\)
Ta có: I và E đối xứng nhau qua AC
nên AC là đường trung trực của IE
Suy ra: AI=AE
hay AC là tia phân giác của \(\widehat{EAI}\)
Ta có: \(\widehat{EAD}=\widehat{EAI}+\widehat{DAI}\)
\(=2\left(\widehat{BAI}+\widehat{CAI}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra:E,A,D thẳng hàng
mà AD=AE(=AI)
nên A là trung điểm của DE