phân tích đa thức thành nhân tử
\(x\sqrt{x}-5\)
\(x+7\sqrt{x}+10\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
\(2x+5\sqrt{x}-3=\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\)
Lời giải:
$x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6$
$=\sqrt{x}(\sqrt{x}-2)-3(\sqrt{x}-2)$
$=(\sqrt{x}-2)(\sqrt{x}-3)$
\(=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(x-6\sqrt{x}+8\)
\(=x-2\sqrt{x}-4\sqrt{x}+8\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)\)
\(x+2\sqrt{x-1}=\left(x-1\right)+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(x-2\right)-4\sqrt{x-2}+4=\left(\sqrt{x-2}-2\right)^2\)
\(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
\(x-4\sqrt{x-2}+2=\left(\sqrt{x-2}+4\right)^2\)
\(x-6\sqrt{x-3}+6\text{=}x-3-6\sqrt{x-3}+9\)
\(\text{=}\left(\sqrt{x-3}\right)^2-2.3.\sqrt{x-3}+\left(3\right)^2\)
\(\text{=}\left(\sqrt{x-3}-3\right)^2\)
A = \(x-6\)\(\sqrt{x-3}\) + 6 (đkxd \(x>3\))
A = (\(x\) - 3) - 2.3.\(\sqrt{x-3}\) + 9
A = (\(\sqrt{x-3}\))2 - 2.3.\(\sqrt{x-3}\) + 32
A = (\(\sqrt{x-3}\)- 3)2
\(M=7\sqrt{x-1}-\sqrt{x^2\left(x-1\right)}+\left(\sqrt{x-1}\right)^2=\sqrt{x-1}\left(7-x+\sqrt{x-1}\right)\)
\(=\sqrt{x-1}\left(6-\left(x-1\right)+\sqrt{x-1}\right)\)( đến đây bạn có thể đặt \(\sqrt{x-1}=t\),t>=0 rồi giải)
\(=-\sqrt{x-1}\left(\sqrt{x-1}-3\right)\left(\sqrt{x-1}+2\right)\)
\(x+7\sqrt{x}+10=\left(\sqrt{x}+2\right)\left(\sqrt{x}+5\right)\)