K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

môn Tin lớp 8 đó nha mấy bnkhocroi

NM
12 tháng 8 2021

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

19 tháng 9 2021

\(1,B=9-5=4\\ 2,\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(\sqrt{5}+1\right)\left(3+2\sqrt{2}\right)-\sqrt{10}\left(\sqrt{5}+2\right)+3\sqrt{2}-3\sqrt{5}\\ =3\sqrt{5}+2\sqrt{10}+3+2\sqrt{2}-5\sqrt{2}-2\sqrt{10}+3\sqrt{2}-3\sqrt{5}=3\)

\(3,\\ a,\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\left(x,y\ge0;xy\ne1\right)\\ =\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\\ =\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}+\sqrt{y}-y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{1+x+y+xy}\\ =\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+x\right)+y\left(1+x\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+y\right)\left(1+x\right)}\)

\(b,x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{1}=4-2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}-1\)

Thay vào BT

\(=\dfrac{2\left(\sqrt{3}-1+\sqrt{y}\right)}{\left(1+y\right)\left(1+4-2\sqrt{3}\right)}=\dfrac{2\sqrt{3}-2+2\sqrt{y}}{\left(1+y\right)\left(3-2\sqrt{3}\right)}\\ =\dfrac{2\sqrt{3}-2+2\sqrt{y}}{3-2\sqrt{3}+3y-2y\sqrt{3}}\)

15 tháng 8 2023

a, y \(\times\) \(\dfrac{4}{3}\) = \(\dfrac{16}{9}\)

    y         =    \(\dfrac{16}{9}\) : \(\dfrac{4}{3}\)

    y         = \(\dfrac{4}{3}\)

b, ( y - \(\dfrac{1}{2}\)) + 0,5 = \(\dfrac{3}{4}\)

    y - 0,5 + 0,5 = \(\dfrac{3}{4}\)

   y                   = \(\dfrac{3}{4}\)

c, \(\dfrac{4}{5}-\dfrac{2}{5}y\) = 0,2

   0,8 - 0,4y = 0,2

           0,4y = 0,8 - 0,2

           0,4y  = 0,6

               y = 1,5

   

15 tháng 8 2023

d, (y + \(\dfrac{3}{4}\)\(\times\) \(\dfrac{5}{7}\) = \(\dfrac{10}{9}\)

    y + \(\dfrac{3}{4}\)           = \(\dfrac{10}{9}\) : \(\dfrac{5}{7}\)

   y + \(\dfrac{3}{4}\)            = \(\dfrac{14}{9}\)

y                    = \(\dfrac{14}{9}\) - \(\dfrac{3}{4}\)

 y                   =   \(\dfrac{29}{36}\)

e, y : \(\dfrac{5}{4}\)         = \(\dfrac{9}{5}\)  + \(\dfrac{1}{2}\)

   y : \(\dfrac{5}{4}\)         =   \(\dfrac{23}{10}\)

  y                =      \(\dfrac{23}{10}\)

  y               =   \(\dfrac{23}{8}\)

f, y \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\) \(\times\) y   = \(\dfrac{4}{5}\)

   y \(\times\) ( \(\dfrac{1}{2}+\dfrac{3}{2}\))      =  \(\dfrac{4}{5}\)

   2y                       = \(\dfrac{4}{5}\)

    y                        = \(\dfrac{2}{5}\)

5 tháng 9 2020

a, \(\left(x+2\right)^2-\left(x+3\right)\left(x-3\right)+10=x^2+4x+4-x^2+9+10=4x+23\)

b, \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)=25-10x+x^2+x^2+10x+25-2x^2+50=100\)

5 tháng 9 2020

a) ( x + 2 )2 - ( x + 3 )( x - 3 ) + 10 

= x2 + 4x + 4 - ( x2 - 9 ) + 10

= x2 + 4x + 4 - x2 + 9 + 10

= 4x + 23

b) ( x + 1 )2 + ( x - 2 )( x + 3 ) - 4x

= x2 + 2x + 1 + x2 + x - 6 - 4x

= 2x2 - 2x - 5

c) ( x - 2 )( x + 2 ) - ( x - 3 )( x + 1 )

= x2 - 4 - ( x2 - 2x - 3 )

= x2 - 4 - x2 + 2x + 3

= 2x - 1 

d) ( x + 4 )2 + ( x + 5 )( x - 5 ) - 2x( x + 1 )

= x2 + 8x + 16 + x2 - 25 - 2x2 - 2x

= 6x - 9

e) ( 5 - x )2 + ( x + 5 )2 - ( 2x + 10 )( x - 5 )

= 25 - 10x + x2 + x2 + 10x + 25 - ( 2x2 - 50 ) 

= 2x2 + 50 - 2x2 + 50

= 100

f) ( x - 2 )2 + ( x + 1 )2 + 2( x - 2 )( -1 - x )

= x2 - 4x + 4 + x2 + 2x + 1 + 2( -x2 + x + 2 )

= 2x2 - 2x + 5 - 2x2 + 2x + 4

= 9

g) ( 3x - 5 )2 - 2( 3x - 5 )( 3x + 5 ) + ( 3x + 5 )2

= [ ( 3x - 5 ) - ( 3x + 5 ) ]2

= ( 3x - 5 - 3x - 5 )2

= ( -10 )2 = 100

h) (  y - 3 )( y + 3 )( y2 + 9 ) - ( y2 + 2 )( y2 - 2 )

= ( y2 - 9 )( y2 + 9 ) - [ ( y2 )2 - 4 ]

= [ ( y2 )2 - 81 ] - y4 + 4

= y4 - 81 - y4 + 4

= -77

29 tháng 6 2015

a) 

A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)

\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)

\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)

13 tháng 11 2016

giup minh cau b o tren nha