K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: CD=AB

mà AB<AC
nên CD<AC

2: Ta có: \(\widehat{BAM}=\widehat{CDA}\)

mà \(\widehat{CDA}>\widehat{MAC}\left(AC>MC\right)\)

nên \(\widehat{BAM}>\widehat{CAM}\)

2 tháng 3 2020

B A C M D 1 2

1)A)XÉT \(\Delta ABM\)\(\Delta DCM\)

\(BM=CM\left(GT\right)\)

\(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)

\(AM=DM\left(GT\right)\)

\(\Rightarrow\Delta ABM=\Delta DCM\left(C-G-C\right)\)

\(\Rightarrow AB=CD\)(HAI CẠNH TƯƠNG ỨNG)(1)

TA CÓ XÉT \(\Delta ABC\)VUÔNG TẠI B

 \(\Rightarrow\widehat{B}>\widehat{C};\widehat{B}>\widehat{A}\)

\(\widehat{B}>\widehat{C}\)

\(\Rightarrow AB< AC\)QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN(2)

TỪ (1) VÀ (2) => \(AC>CD\)

B) CÂU B QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN 

2 tháng 3 2020

b) XÉT \(\Delta ADC\)

CÓ \(DC< AC\left(CMT\right)\)

\(\Rightarrow\widehat{ADC}>\widehat{DAC}\left(1\right)\)QUA HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN

MÀ \(\Delta ABM=\Delta DCM\left(CMT\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{MDC}\)

HAY\(\widehat{BAM}=\widehat{ADC}\left(2\right)\)

TỪ (1) VÀ (2) \(\Rightarrow\widehat{BMA}>\widehat{MAC}\)

5 tháng 6 2018

a, Có: AM là trung tuyến ΔABC

\(\Rightarrow\) M là trung điểm BC

\(\Rightarrow MB=MC\)

Xét ΔABM và ΔCDM có:

\(MB=MC\left(cmt\right)\)

\(\widehat{AMB}=\widehat{CMD}\left(đ^2\right)\)

\(MA=MD\)

\(\Rightarrow\) ΔABM = ΔCDM ( c.g.c )

\(\Rightarrow\widehat{BAM}=\widehat{DCM}\left(2gtu\right)\)

\(\Rightarrow AB//CD\)

Mà \(BA⊥AC\)

\(\Rightarrow DC⊥AC\)

b, Có: ΔABM = ΔCDM ( cmt )

\(\Rightarrow\left\{{}\begin{matrix}BA=DC\left(2ctu\right)\\\widehat{ABM}=\widehat{CDM}\left(2gtu\right)\end{matrix}\right.\)

Xét ΔABC và ΔCDA có:

\(\widehat{ABM}=\widehat{CDM}\left(cmt\right)\)

\(AB=CD\left(cmt\right)\)

\(\widehat{BAC}=\widehat{DCA}\left(=90^o\right)\)

\(\Rightarrow\) ΔABC = ΔCDA ( g.c.g )

\(\Rightarrow BC=DA\left(2ctu\right)\)

Có: M là trung điểm BC

      M là trung điểm AD ( MA = MD )

Mà \(BC=AD\)

\(\Rightarrow MA=MB\)

\(\Rightarrow\) ΔABM cân tại M

Mà \(\widehat{ABM=60^o}\)

\(\Rightarrow\) ΔABM là tam giác đều.

 

 

30 tháng 4 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o.

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 4 2019

qua essy

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AB=CD và AB//CD
b: Sửa đề: AB<AC

AB=CD

=>CD<AC

=>góc CAD<góc CDA

=>góc CAD<góc BAD

c: góc AMB=góc MAC+góc ACB

góc AMC=góc MAB+góc ABC

mà góc MAC<góc MAB và góc ACB<góc ABC

nên góc AMB<góc AMC

22 tháng 8 2023

omg cảm ơn bạn, giờ tui mới vào lại xem =))

 

31 tháng 1 2017

Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 5 2022

tự vẽ hình:)

a,

Xét Δ MBA và ΔMCD, có :

MA = MD (gt)

MB = MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{CMD}\) (đối đỉnh)

=> Δ MBA = Δ MCD (c.g.c)

=> AB = CD

Ta có : \(\widehat{MBA}=\widehat{MCD}\) (Δ MBA = Δ MCD)

=> AB // CD (sole - trong)

30 tháng 5 2022

b,

Ta có :

AB // CD (cmt)

Mà BA ⊥ AC

=> CD ⊥ AC

Xét Δ ABC và Δ CDA, có :

AB = CD (gt)

\(\widehat{BAC}=\widehat{DCA}=90^o\)

\(\widehat{CBA}=\widehat{ADC}\) (Δ MBA = Δ MCD)

=> Δ ABC = Δ CDA (g.c.g)

20 tháng 1 2016
tyttyhhdfhdh
hhfh
hddfg