K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

21 tháng 6 2020

tự kẻ hình nha

a) xét tam giác BMD và tam giác CMA có

 AM=MD(gt)

BM=CM(gt)

AMC=BMD( đối đỉnh)

=> tam giác BMD= tam giác CMA(cgc)

=> BDM=MAC( hai góc tương ứng)

mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ

b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)

xét tam giác ABC và tam giác BAD có

BD=AC(cmt)

AB chung

BAC=ABD(=90 độ)

=> tam giác ABC= tam giác BAD(cgc)

c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)

mà AM=MD=> M là trung điểm của AD 

và M là trung điểm của BC=> AM=MD=BM=CM

=> 2AM=BM+CM

=> 2AM=BC

=> AM=1/2BC

30 tháng 4 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o.

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 4 2019

qua essy

1 tháng 5 2019

a. Xét ΔAMB và ΔAMC, ta có:

AM = AC (gt)

BM = CM (gt)

AM cạnh chung

Suy ra: ΔAMB = ΔAMC (c.c.c)

Suy ra: ∠(AMB) = ∠(AMC) (1)

Lại có: ∠(AMB) + ∠(AMC) = 180o (hai góc kề bù) (2)

Từ (1) và (2) suy ra: ∠(AMB) = ∠(AMC) = 90o

Vậy AM ⊥ BC.

b. Tam giác AMB có ∠(AMB) = 90o

Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:

AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162

= 1156 - 256 = 900

Suy ra: AM = 30 (cm).

7 tháng 4 2023

Thank youuuu những bạn giải quyết giúp mình bài tập :33

 

2:

a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN

nên G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm chung của BE và CF

=>BCEF là hình bình hành

=>BC=EF

b: Xét ΔFAE và ΔBGC có

FA=BG

AE=GC

FE=BC

=>ΔFAE=ΔBGC

21 tháng 7 2019

a) Xét 2 tam giác cs:

BM=MC

góc BMD=AMC

MD=MA

=> = nhau( c.g.c)

21 tháng 7 2019

b) từ a=> góc DBM=MCA

Mà 2 góc này ở vị trí slt

=> BD//AC

=> góc DBA+BAC=180(TCP)

=> ABD=180-90=90 độ

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2