K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

\(C=2x^3+x^2+x-1=0\\ \Rightarrow x^3+x^3+x^2+x-1=0\\ \Rightarrow x^3+\left(x^3+x^2\right)-\left(x+1\right)=0\\ \Rightarrow x^3+x^2\left(x+1\right)-\left(x+1\right)=0\\ \Rightarrow x^3+\left(x+1\right)\left(x^2-1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x^3=0\\\left(x+1\right)\left(x^2-1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x+1=0\\x^2-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-1\\x=\sqrt{1}\end{matrix}\right.\end{matrix}\right.\)

Vậy đa thức trên có nghiệm là \(\left\{{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-1\\x=\sqrt{1}\end{matrix}\right.\end{matrix}\right.\)

17 tháng 6 2021

Để đa thức \(C\left(x\right),D\left(x\right)\) có nghiệm thì \(C\left(x\right)=0,D\left(x\right)=0\)

Do đó : \(C\left(x\right)=\left(\dfrac{1}{2}\right)^3-2x=0\)

\(\Rightarrow\dfrac{1}{8}-2x=0\)

\(\Rightarrow2x=\dfrac{1}{8}\)

\(\Rightarrow x=\dfrac{1}{8}:2=\dfrac{1}{16}\)

Vậy \(x=\dfrac{1}{16}\) là nghiệm của đa thức \(C\left(x\right)\)

\(D\left(x\right)=2x^2-5x-7=0\)

\(\Rightarrow2x^2+2x-7x-7=0\)

\(\Rightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(2x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;\dfrac{7}{2}\right\}\) là nghiệm của đa thức \(D\left(x\right)\)

 

 

1:

a: 5x(x^2-2x+1)

=5x*x^2-5x*2x+5x*1

=5x^3-10x^2+5x

b: \(M\left(x\right)+N\left(x\right)\)

=8x^2-2x+7+x^2+2x-9

=9x^2-2

c: C(x)=0

=>-3x+9=0

=>-3x=-9

=>x=3

2:

a: Xét ΔAMN và ΔAEP có

AM=AE

góc MAN=góc EAP

AN=AP

=>ΔAMN=ΔAEP

b: ΔAMN=ΔAEP

=>góc AMN=góc AEP

=>MN//EP

mà MN vuông góc MP

nên EP vuông góc MP

c: ΔMPN vuông tại M có MA là trung tuyến

nên MA=1/2NP

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

3 tháng 8 2018

Vì \(3< x< 5\)

\(\Rightarrow x=4\)

Ta có : \(C=x^2-2x-5\)

\(=x^2-2x.1+1^2-1^2-5\)

\(=x^2-2x.1+1-1-5\)

\(=\left(x^2-2x.1+1\right)-1-5\)

\(=\left(x-1\right)^2-6\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2-6\ge6\)

Vậy C đạt GTNN <=> x=1

23 tháng 7 2021

C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 ) 

= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4 

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN C là 4 khi x = -1 

D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 ) 

=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 ) 

= - ( x + 3/2 )^2 + 37/4 =< 37/4

Dấu ''='' xảy ra khi x = -3/2 

Vậy GTLN D là 37/4 khi x = -3/2 

5 tháng 4 2018

                                                 Giải

1) M(x) = -2x+3 ->-2x+3 =0 

                         ->x= 3/2

Vậy nghiệm của M(x) là 3/2

2) P(x) =ax+1 có nghiệm là -2

-> P(-2) =a*(-2)+1=0

-> a= 1/2

Vậy hệ số của P(x) là 1/2

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2