K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

Áp dụng bất bẳng thức giá trị tuyệ dối |a| + |b| > = |a + b|\(A=\left|2x+\frac{1}{5}\right|+\left|-2x-\frac{1}{7}\right|+\left|2x+\frac{1}{6}\right|\ge\left|2x+\frac{1}{5}-2x-\frac{1}{7}\right|+0=\frac{2}{35}\)

Dấu "=" xảy ra khi \(\left(2x+\frac{1}{5}\right);\left(-2x-\frac{1}{7}\right)\) cùng dấu và \(2x+\frac{1}{6}=0\Rightarrow x=-\frac{1}{12}\)

Vậy A nhỏ nhát bằng 2/35 khi x = -1/12

5 tháng 10 2015

Áp dụng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

\(A=\left(\left|2x+\frac{1}{5}\right|+\left|-2x-\frac{1}{7}\right|\right)+\left|2x+\frac{1}{6}\right|\ge\left|2x+\frac{1}{5}-2x-\frac{1}{7}\right|+0=\frac{2}{35}\)

Dấu "=" xảy ra khi x = -1/12

5 tháng 10 2015

Á ghi nhầm dấu + thành -. Sửa lại cho mình là x = -1/12 nhé !     

5 tháng 10 2015

Amin=\(\frac{2}{35}\Leftrightarrow x=-\frac{1}{12}\)

3 tháng 12 2015

ta có:

\(\left|2x+\frac{1}{7}\right|=\left|-2x-\frac{1}{7}\right|;\left|-2x-\frac{1}{7}\right|\ge-2x-\frac{1}{7}\)

\(\left|2x+\frac{1}{6}\right|\ge0;\left|2x+\frac{1}{5}\right|\ge2x+\frac{1}{5}\)

=> \( A\ge2x+\frac{1}{5}+0-2x-\frac{1}{7}=\frac{2}{35}\)

dấu "=" xảy ra <=>\(x=-\frac{1}{12}\)

6 tháng 11 2015

biểu thức đạt GTNN là 2/35 <=>x=\(-\frac{1}{12}\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)

18 tháng 3 2018

\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)

\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)

\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)

20 tháng 3 2018

dòng thứ 2 ko hiểu

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee