1) Cho a,b,c thỏa mãn a + b + c = 3.
Tìm GTNN của P =\(\dfrac{a}{a^3+b^3}+\dfrac{b}{b^3+c^3}+\dfrac{c}{c^3+a^3}\)
2) Cho x,y,z thỏa mãn
Tìm GTNN của P =\(\dfrac{x^5y}{x^2+1}+\dfrac{y^5z}{y^2+1}+\dfrac{z^5x}{z^2+1}\)
3) Cho a,b,c thỏa mãn a + b + c = 3.
Tìm GTNN của P =\(\dfrac{1}{a^2+abc}+\dfrac{1}{b^2+abc}+\dfrac{1}{c^2+abc}\)
4) Cho a,b,c thỏa mãn a + b + c = 1.
a/ Tìm GTLN của Q =\(\dfrac{a}{a^3+a^2+1}+\dfrac{b}{b^3+b^2+1}+\dfrac{c}{c^3+c^2+1}\)
b/ Chứng minh rằng \(\dfrac{a}{b^3+2abc}+\dfrac{b}{c^3+2abc}+\dfrac{c}{a^3+2abc}>\dfrac{15}{2}\)