cho A=\(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}...\dfrac{79}{80}\)
CMR A<\(\dfrac{1}{9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.....\dfrac{79}{80}\)
=> A1 < \(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{5}{6}.....\dfrac{80}{81}\)
=> A2 < A.A1 = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}....\dfrac{79}{80}.\dfrac{80}{81}=\dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
=> A < \(\dfrac{1}{9}.\)
\(\dfrac{1}{1\cdot2}>\dfrac{1}{2^2}>\dfrac{1}{2\cdot3},\dfrac{1}{2\cdot3}>\dfrac{1}{3^2}>\dfrac{1}{3\cdot4},...,\dfrac{1}{8\cdot9}>\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)
\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\) \(\Rightarrow1-\dfrac{1}{9}>A>\dfrac{1}{2}-\dfrac{1}{10}\) \(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\)
Lời giải:
Đặt biểu thức đã cho là $A$
Ta có:
\(\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}> \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\)
\(\Rightarrow \frac{1}{1+\sqrt{2}}> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
Hoàn toàn TT: \(\frac{1}{\sqrt{3}+\sqrt{4}}> \frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
.......
\(\frac{1}{\sqrt{79}+\sqrt{80}}> \frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bđt trên lại với nhau:
\(\Rightarrow A> \frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(A> \frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\) (liên hợp)
\(A> \frac{1}{2}> (\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{81}-\sqrt{80})\)
\(A> \frac{1}{2}(\sqrt{81}-1)=4\) (đpcm)
đây là tính nhanh à nếu tính bình thường thì tính may tính là ra
a) 17/23 . 8/16 . 23/17. (-80) . 3/4
= (17/23 . 23/17) . (8/16 . 3/4) . (-80)
= 1 . 3/8 . (-80)
= 3/8 . (-80)
= -30
b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29
= 5/11 . (18/29 - 8/29 + 19/29)
= 5/11 . 1
= 5/11
c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)
= (13/23 + 1313/2323 - 131313/232323).0
= 0
d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10
= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10
= 1/10
Khó nhìn quá. Bạn thông cảm nhé!
\(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{3}{3}=1\)
\(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{49}{30}\)
\(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{1}{5}\)
\(\dfrac{8}{5}x\dfrac{5}{8}=\dfrac{1}{1}=1\)
\(\dfrac{6}{7}x\dfrac{4}{7}=\dfrac{24}{49}\)
\(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}x\dfrac{5}{4}=\dfrac{1}{1}=1\)
\(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}x\dfrac{5}{5}=\dfrac{1}{1}=1\)
1) \(\dfrac{1}{3}+\dfrac{2}{3}=\dfrac{1+2}{3}=\dfrac{3}{3}=1\)
2) \(\dfrac{4}{5}+\dfrac{5}{6}=\dfrac{24}{30}+\dfrac{25}{30}=\dfrac{24+25}{30}=\dfrac{49}{30}\)
3) \(\dfrac{4}{5}-\dfrac{3}{5}=\dfrac{4-3}{5}=\dfrac{1}{5}\)
4) \(\dfrac{9}{8}-\dfrac{4}{2}=\dfrac{9}{8}-2=\dfrac{9}{8}-\dfrac{16}{8}=-\dfrac{7}{8}\)
5) \(\dfrac{8}{5}\times\dfrac{5}{8}=\dfrac{8\times5}{5\times8}=\dfrac{40}{40}=1\)
6) \(\dfrac{6}{7}\times\dfrac{4}{7}=\dfrac{6\times4}{7}=\dfrac{24}{7}\)
7) \(\dfrac{4}{5}:\dfrac{4}{5}=\dfrac{4}{5}\times\dfrac{5}{4}=\dfrac{4\times5}{5\times4}=\dfrac{20}{20}=1\)
8) \(\dfrac{5}{5}:\dfrac{5}{5}=\dfrac{5}{5}\times\dfrac{5}{5}=\dfrac{5\times5}{5\times5}=\dfrac{25}{25}=1\)
a=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{79}{80}\)
a<\(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{80}{81}\)
\(\text{a}^2< \dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{79}{80}\cdot\dfrac{80}{81}\)
\(\Rightarrow\text{a}^2< \dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)
\(\Rightarrow\text{a}< \dfrac{1}{9}\)(dpcm)
Nho tich cho mk nhe
thanks bn nha