Cho hình chóp tứ giác S.ABCD. Gọi M, N là trung điểm của AB và BC. Mặt phẳng (α) thay đổi luôn đi qua MN cắt SC, SA tại P và Q
1-Tìm giao điểm của AD và SD với (α)
2-Tìm thiết diện của hình chóp bị cắt bởi (α)
3-Chứng minh rằng nếu thì 3 điểm S, B ,I thẳng hàng
Gọi (α) là mặt phẳng qua O song song với AB và SC.
AB // (α) nên (α) cắt mp(ABCD) theo giao tuyến qua O và song song với AB. Gọi M, N lần lượt là giao điểm của đường thẳng qua O song song AB với BC và AD.
Trong mặt phẳng (SAC) kẻ OP // SC (P ϵ AS) (α) cắt mp(SAB) theo giao tuyến PQ // AB (Q ϵ SB)
Thiết diện cần tìm là tứ giác MNPQ.
Tứ giác MNPQ có PQ // MN nên MNPQ là hình thang.