Chứng minh rằng abcd -(a+b+c+d) chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Ta có: a + b + c + d chia hết cho 9
=> a chia hết cho 9
b chia hết cho 9
c chia hết cho 9
d chia hết cho 9
Mặt khác : abcd = a * 1000 + b*100 + c* 10 + d
mà a* 1000 chia hết cho 9
b * 100 chia hết cho 9
c * 10 chia hết cho 9
d chia hết cho 9
=> đpcm
a/ ab+ba chia hết cho 11
Vì tổng các số chẵn -tổng các số lẻ:(b+a)-(a+b)=0 chia hết cho 11
=>Tổng ab+ba chia hết cho 11
abcd = a.1000 + b.100 + c.10 + d -( a.1 + b . 1 + c.1 + d.1)
= a . 999 + b.99 + c . 9 Chia hết cho 9 ( vì 999 , 99 , 9 chia hết cho 9 )
Vây ... chia hết cho 9
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
abcd - (a + b + c + d) = (1000a + 100b + 10c + d) - (a + b + c + d) = 999a + 99b + 9c = 9.(111a + 11b + c) chia hết cho 9