1) GPT: (6x+5)2(3x+2)(x+1)=35
2) cho 3 số dương a,b,c thỏa a+b+c=1.
c/minh: \(\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{a}{c}+\frac{c}{a}+6\ge2\sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)
or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)
Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)
Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)
Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)
Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)
Done!
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
1.
\(A=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{6+2\sqrt{5}}}}{\sqrt{6-2\sqrt{5}}+2}=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}\)
\(=\frac{\sqrt{10+2\sqrt{5}-4\sqrt{5}-4}}{\sqrt{5}-1+2}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}+1}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}\)
b. Thôi nhìn biến đổi khủng thế này thì nhường bạn :))
2.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng tính chẵn lẻ
\(\Rightarrow\) có ít nhất một trong 3 hiệu \(a-b\) ; \(a-c\) ; \(b-c\) là chẵn
\(\Rightarrow a+b+c\) chẵn
- Nếu a;b;c cùng số dư khi chia hết cho 3 thì \(a-b;a-c;b-c\) đều chia hết cho 3 \(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)⋮27\Rightarrow a+b+c⋮27\)
Mà 27 và 2 nguyên tố cùng nhau nên \(a+b+c⋮\left(27.2=54\right)\)
- Nếu a;b;c chia 3 ra 3 loại số dư khác nhau là 0;1;2 \(\Rightarrow a+b+c⋮3\)
Đồng thời cả \(a-b;b-c;c-a\) đều ko chia hết cho 3
\(\Rightarrow\) Không thỏa mãn \(\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\)
- Nếu trong 3 số a;b;c có 2 số cùng số dư khi chia hết cho 3 và 1 số chia 3 khác số dư
\(\Rightarrow\) \(a+b+c⋮̸3\)
Trong khi đó ít nhất 1 trong 3 hiệu \(a-b;b-c;c-a\) sẽ có 1 giá trị chia hết cho 3 (do có 2 số cùng số dư khi chia 3)
\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(b-c\right)=a+b+c\) ko thỏa mãn
Vậy \(a+b+c⋮54\)
2b
Câu này đề có sai ko bạn? Trong căn là \(2\sqrt{x+4}\) thì còn có lý
Pt như nguyên mẫu được biến đổi thành:
\(\left(x^2+6x+9\right)+\left(x-4-2\sqrt{x-4}+1\right)+8=0\)
\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{x-4}-1\right)^2+8=0\)
Hiển nhiên vô nghiệm
3.
\(\frac{a}{a+1}\ge1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\) ; \(\frac{c}{c+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế với vế: \(\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\ge8\)
Bài 2:
Ta có: \(a,b>0\) nên: \(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
Lại có: \(\frac{x^3+8y^3}{x^3}=\left(1+\frac{2y}{x}\right)\left(1-\frac{2y}{x}+\frac{4y^2}{x^2}\right)\) \(\le\frac{\left(2x^2+4y^2\right)^2}{4x^4}\)
\(\Rightarrow\sqrt{\frac{x^3}{x^3+8y^3}}\ge\frac{2x^2}{2x^2+4y^2}\)
Tương tự như trên ta có được: \(\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{4y^2}{2y^2+\left(x+y\right)^2}\)
Lại có: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) nên:
\(\Rightarrow2y^2+\left(x+y\right)^2\le2x^2+4y^2\)
\(\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{4y^2}{2x^2+4y^2}\)
\(\Rightarrow\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow Min_P=1\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}4y^2\left(x-y\right)^2=0\\\left(x-y\right)^2\left(x^2+xy+2y^2\right)=0\end{matrix}\right.\Leftrightarrow x=y\)
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
\(PT\Leftrightarrow\left(\left(3x+2\right)+\left(3x+3\right)\right)^2\left(3x+2\right)\left(3x+3\right)=105\)
Đặt 3x+2=a suy ra\(\left(2a+1\right)^2a\left(a+1\right)=105\)
Đến đây giải bt,tìm đc a =>x.(tick nha)