Giải pt
(x+1)2(x+2) + (x+1)2(x-2) = -24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)
\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )
Vậy \(S=\left\{1\right\}\)
b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)
\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{-4;1\right\}\)
e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;1\right\}\)
\(\left(x+1\right).\left(x+1\right)\left(x+2\right)=24\)
\(\left(x^2+2x+1\right).\left(x+2\right)=24\)
\(x^3+2x^2+2x^2+4x+x+2=24\)
\(x^3+4x^2+5x+2=24\)
rồi đặt nhân tử chung
bạn tự giải nhé
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
đặt \(x^2+5x+5=t\)
\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
=>x(x+3)(x+1)(x+2)=24 hay (x2+3x)(x2+3x+2)=24;
Đặt x2+3x là t; ta có:
t(t+3)=24 => t2+2t+1-1=24 => (t+1)2-1=24=> (t+1)2=25=>t=4;
Thay vào ta có: x2+3x=4=> x=1;
4 số tự nhiên liên tiếp luôn chia hết cho 24 → x = 1 ( vì kết quả = 24 )
Vì mình với học lớp 6 nên chỉ biết thế, còn phương trình là gì mình còn không biết
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=a\)ta có:
\(a\left(a+2\right)-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-25\)
\(=\left(a-4\right)\left(a+6\right)\)
Thay trở lại ta được:
\(\left(x^2+5x\right)\left(x^2+5x+10\right)\)
a. (x-1)x(x+1)(x+2)=24
[(x-1)(x+2)].[x(x+1)]=24
(\(x^2\)+2x-x-2)(\(x^2\)+x)=24
(\(x^2\)+x-2)(\(x^2\)+x)=24
[(\(x^2\)+x-1)-1].[(\(x^2\)+x-1)+1]=24
\(\left(x^2+x-1\right)^2\)-1=24
\(\left(x^2+x-1\right)^2\)=25
\(\left(x^2+x-1\right)^2\)=\(5^2\) hoặc\(\left(x^2+x-1\right)^2\)=\(\left(-5\right)^2\)
\(x^2\)+x-1=5 hoặc \(x^2\)+x-1=-5
\(x^2\)+x-6=0 hoặc \(x^2\)+x+4=0(vô nghiệm)
\(\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy x=2 hoặc x=-3
a)(x-1)x=x2-x
(x+1)(x+2)=x(x+2)+(x+2)=x2+2x+x+2=x2+3x+2
=>(x-1)x(x+1)(x+2)=(x2-x)(x2+3x+2)=x2(x2+3x+2)-x(x2+3x+2)=x4+3x3+2x2-x3-3x2-2x
=x4+2x3-x2-2x
mà (x-1)x(x+1)(x+2)=24
nên x4+2x3-x2-2x=24
x3(x+2)-x(x+2)=24
(x3-x)(x+2)=24
Ta xét bảng sau:
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 8 | -8 | 12 | -12 | 24 | -24 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 2 | -6 | 4 | -8 | 6 | -10 | 10 | -14 | 22 | -26 |
x3-x | 24 | -24 | 12 | -12 | 8 | -8 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 2 |
(ô trống là loại)
Vậy x=2, hờ hờ, t làm tầm bậy, không theo phương trình gì hết
(x+1)2(x+2) + (x+1)2(x-2) = -24
⇔(x+1)2 (x+2+x-2)=-24
⇔(x+1)2 2x=-24
⇔ (x2+2x+1)2x=-24
⇔2x3+4x2+2x+24=0
⇔2(x3+2x2+x+12)=0
⇔x3+2x2+x+12=0
⇔x3+3x2-x2-3x+4x+12=0
⇔(x3+3x2)-(x2+3x)+(4x+12)=0
⇔x2(x+3)-x(x+3)+4(x+3)=0
⇔ (x+3)(x2-x+4)=0
⇔ \(\left[{}\begin{matrix}x+3=0\Leftrightarrow x=-3\\x2-x+4=0\left(voly\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-3}