Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
Ta có :
\(x^2+5x+6=\left(x+2\right)\left(x+3\right)\)
\(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
\(x^2+9x+20=\left(x+4\right)\left(x+5\right)\)
Khi đó:
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}=\dfrac{3}{40}\)
=> \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
=> \(\dfrac{1}{x+2}-\dfrac{1}{x+5}=\dfrac{3}{40}\)
Giải phương trình ta được x = 3
a) PT \(\Leftrightarrow\left(2x^3-x^2\right)-\left(4x^2-8x+3\right)=0\)
\(\Leftrightarrow x^2\left(2x-1\right)-\left(2x-3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\)
Vì \(x^2-2x+3=\left(x-1\right)^2+2>0\Rightarrow x=\frac{1}{2}\)
\(S=\left\{\frac{1}{2}\right\}\)
b) Bước 1 nhẩm nghiệm, bước 2 dùng lược đồ Hoocne để chia... Sau cùng
PT \(\Leftrightarrow\) \(\left( x+2 \right) \left( 2\,x+1 \right) \left( x-1 \right) ^{2}=0\) (mình làm tắt chút, đang bận, nếu cần thì cmt xuống dưới, tối mình giải rõ)
Suy ra x + 2 = 0 hoặc 2x + 1 = 0 hoặc x - 1 = 0
Hay x = -2 hoặc \(x=-\frac{1}{2}\) hoặc x = 1.
Vậy \(S=\left\{-2,-\frac{1}{2};1\right\}\)
c) PT \(\Leftrightarrow\) \(\Big[(x+1)(x+4)\Big]\Big[(x+2)(x+3)\Big]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt \(x^2+5x+4=t\). PT trở thành:
\(t\left(t+2\right)=24\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)
Suy ra: \(\left[{}\begin{matrix}t=-6\\t=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=-6\\x^2+5x+4=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+5x+10=0\\x\left(x+5\right)=0\end{matrix}\right.\)
Vì: \(x^2+5x+10=\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\)
Nên \(x\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{0;-5\right\}\)
\(\left(x^2-x+1\right)^4-10x^2\left(x^2-x+1\right)^2+9x^4=0\)
dặt \(\left(x^2-x+1\right)^{ }=y\)ta đc:
\(y^4-10x^2y^2+9x^4=0< =>y^4-9x^2y^2-x^2y^2+9x^4=0< =>y^2\left(y^2-9x^2\right)-x^2\left(y^2-9x^2\right)=0< =>\left(y^2-x^2\right)\left(y^2-9x^2\right)=0< =>\left(y-x\right)\left(y+x\right)\left(y-3x\right)\left(y+3x\right)=0\)
<=<\(\left[{}\begin{matrix}y-x=0< =>y=x\\y+x=0< =>y=-x\\y-3x=0< =>y=3x\\y+3x=0< =>y=-3x\end{matrix}\right.\)
(tớ k chắc :))
tớ làm tiếp,quên mất phẩn thay==
thay y=x^2-x+1 ta đc:
\(\left[{}\begin{matrix}x^2-x+1=x\\x^2-x+1=-x\\x^2-x+1=-3x\\x^2-x+1=3x\end{matrix}\right.< =>\left[{}\begin{matrix}x^2-2x+1=0\\x^2+1=0\\x^2+2x+1=0\\x^2-4x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x-1\right)^2=0\\x^2+1=0\\\left(x+1\right)^2=0\\x^2+4x+4-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x-1=0\\x^2=-1\left(voly\right)\\x+1=0\\\left(x+2\right)^2=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=1\\xktm\\x=-1\\x+2=\sqrt{ }\end{matrix}\right.3}\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)
đến đây bn giải tiếp
(x+1)2(x+2) + (x+1)2(x-2) = -24
⇔(x+1)2 (x+2+x-2)=-24
⇔(x+1)2 2x=-24
⇔ (x2+2x+1)2x=-24
⇔2x3+4x2+2x+24=0
⇔2(x3+2x2+x+12)=0
⇔x3+2x2+x+12=0
⇔x3+3x2-x2-3x+4x+12=0
⇔(x3+3x2)-(x2+3x)+(4x+12)=0
⇔x2(x+3)-x(x+3)+4(x+3)=0
⇔ (x+3)(x2-x+4)=0
⇔ \(\left[{}\begin{matrix}x+3=0\Leftrightarrow x=-3\\x2-x+4=0\left(voly\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-3}