Trong tam giác ABC, hai đường trung tuyến AA1 và BB1 cắt nhau tại O. Tính S tam giác ABC nếu S tam giác AOB = 5 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
Ta có ½. (∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 111o = 69o.
Suy ra ∠A + ∠B = 138o
Suy ra ∠C = 180o – (∠A + ∠B) = 180o − 138o = 42o.
Vì CM là tia phân giác của góc ACB nên: ∠(ACM) = ∠(BCM) = 420 : 2 = 21o.
Ta có: ∠A + ∠B +∠C = 180º ( tổng ba góc trong một tam giác).
Suy ra: ∠C = 180º – (∠A + ∠B)
Do ba đường phân giác của một tam giác đồng quy tại một điểm nên CM là tia phân giác của góc C.
1/2(∠A + ∠B ) = ∠(MAB) + ∠(MBA) = 180 − ∠(AMB) = 180o − 136o = 44o
Suy ra ∠A + ∠B = 2.44o = 88o
∠C = 180o − 88o = 92o
Vậy ∠(ACM) = ∠(BCM) = 92o : 2o = 46o
Gọi giao điểm của CM và AB là C1. Ta cần chứng minh CC1 ⊥ AB và C1 là trung điểm của đoạn thẳng AB. Vì trong một tam giác ba đường cao đồng quy nên CM hay CC1 vuông góc với AB.
+) Do tam giác ABC cân tại C có CM là đường cao nên CM đồng thời là đường trung trực của đoạn thẳng AB ( tính chất tam giác cân).
+) Vì tam giác ABC có hai đường trung tuyến AA1 và BB1 cắt nhau tại O nên O là trọng tâm tam giác ABC.
Theo tính chất trọng tâm tam giác ta có:
+) Ta có:
( vì có cùng chiều cao hạ từ B và )
Và ( vì có cùng chiều cao hạ từ A và ).
+) Từ đó suy ra:
Nếu SAOB = 5cm2 thì SABC = 3.5 = 15(cm2)
a, Có : ^BCK = ^BAK ( chắn cung BK )
^BAK = ^BCH (Phụ ^ABC)
=> ^HCA1 = ^A1CK
=> CA1 là phân giác ^HCK
Tam giác HCK có CA1 vừa là đường cao vừa là phân giác
=> \(\Delta\)HCK cân tại C
=> CA1 là trung tuyến
=> A1 là trung điểm HK
b,\(\frac{HA}{AA_1}+\frac{HB}{BB_1}+\frac{HC}{CC_1}=1-\frac{HA_1}{AA_1}+1-\frac{HB_1}{BB_1}+1-\frac{HC_1}{CC_1}\)
\(=3-\frac{S_{BHC}}{S_{ABC}}-\frac{S_{AHC}}{S_{ABC}}-\frac{S_{AHB}}{S_{ABC}}\)
\(=3-1\)
\(=2\)
c,D \(OM\perp BC\)tại M nên M là trung điểm BC
Xét \(\Delta\)BB1C vuông tại B1 có B1M là trung tuyến
=> B1M = MB = MC
=> ^MBB1 = ^MB1B
và ^MB1C = ^MCB1
Mà ^B1AE = ^B1BC (Chắn cung EC)
^MB1C = ^AB1N (đối đỉnh)
^BB1M + ^CB1M = 90o
=> ^NAB1 + ^NB1A = 90o
=> \(B_1N\perp AE\)
Theo hệ thức lượng trong tam giác vuông có:
\(AB_1^2=AN.AE\)
\(EB_1^2=EN.EA\)
\(\Rightarrow\frac{AB_1^2}{EB_1^2}=\frac{AN.AE}{EN.EA}=\frac{AN}{EN}\)
làm khác cách trong vở bài tập nha!