có BE//CD và AD vuông góc với AC
Chứng minh BE < CE, CE < CD, BE < CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình chiếu AB<AC (theo hình vẽ) => EB<EC
hình chiếu AE<AC=>CE<CB
từ đó =>EB<EC<CB
=>EB<CB
Bạn ơi đây là góc cho câu hỏi môn GDCD, nếu bạn muốn hỏi toán thì qua bên phần toán hỏi bạn nhé
a: Xét ΔBMD vuông tại D và ΔCME vuông tại E có
MB=MC
\(\widehat{BMD}=\widehat{CME}\)(hai góc đối đỉnh)
Do đó: ΔBMD=ΔCME
=>BD=CE
Ta có: BD\(\perp\)AM
CE\(\perp\)AM
Do đó: BD//CE
b: Xét tứ giác BDCE có
BD//CE
BD=CE
Do đó: BDCE là hình bình hành
=>BE//CD và BE=CD
c: \(AD+AE=AD+AD+DE\)
\(=2AD+2DM\)
\(=2\left(AD+DM\right)=2AM\)
Cảm ơn bạn, nhưng mà bạn chỉ giúp mình hình của bài này được không.
Của bạn đây nhé hihih