Hộ mình nha -Đề thi tuyển sinh vào 10 THPT chuyên Quốc học Huế 2013-2014-
Câu 2: (1,5 điểm) Cho phương trình: x4 + (1 - m)x2 + 2m - 2 = 0, (m là tham số)
1. Tìm các giá trị của m để phương trình trên có 4 nghiệm phân biệt.
2. Trong trường hợp phương trình có 4 nghiệm phân biệt là x1, x2, x3, x4. Hãy tìm các giá trị của m sao cho:
\(\dfrac{x_1x_2x_3}{2x_4}+\dfrac{x_1x_2x_4}{2x_3}+\dfrac{x_1x_3x_4}{2x_2}+\dfrac{x_2x_3x_4}{2x_1}=2013\)
a)Đặt \(t=x^2\) ta có: \(Pt\Leftrightarrow t^2+\left(1-m\right)t+2m-2=0\)
\(\Delta=\left(1-m\right)^2-4\left(2m-2\right)=1-2m+m^2-8m+8\\ =\left(m-1\right)\left(m-9\right)\)
Để phương trình có 4 nghiệm phân biệt thì \(\Delta>0\) tức là \(\left(m-1\right)\left(m-9\right)>0\Leftrightarrow\left[{}\begin{matrix}m< 1\\m>9\end{matrix}\right.\)
và \(t_1,t_2>0\)
Giả sử \(t_1>t_2>0\)
\(\Rightarrow m-1>\sqrt{\left(m-1\right)\left(m-9\right)}\Leftrightarrow m^2-2m+1>m^2-10m+9\\ \Leftrightarrow8m-8>0\Leftrightarrow m>1\)Vậy để phương trình có 4 nghiệm phân biệt thì \(m>9\)
b)Giả sử \(\left\{{}\begin{matrix}x_1=\sqrt{t_1}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_2}\\x_4=-\sqrt{t_2}\end{matrix}\right.\)
Ta có: \(\dfrac{x_1x_2x_3}{2x_4}=\dfrac{\sqrt{t_1}\left(-\sqrt{t_1}\right)\sqrt{t_2}}{-2\sqrt{t_2}}=\dfrac{t_1}{2}\)
Tương tự ta có: \(\dfrac{x_1x_2x_4}{2x_3}=\dfrac{t_1}{2};\dfrac{x_1x_3x_4}{2x_2}=\dfrac{t_2}{2};\dfrac{x_2x_3x_4}{2x_1}=\dfrac{t_2}{2}\)
\(\Rightarrow t_1+t_2=2013\Leftrightarrow m-1=2013\Leftrightarrow m=2014\left(TM\right)\)