Cho 2 số x , y thỏa mãn điều kiện : 3x + y = 1
Tìm giá trị nhỏ nhất của biểu thức : M = 3x2+ y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có:
3 x 2 + y 2 − 2 . log 2 x − y = 1 2 1 + log 2 1 − x y ⇔ 3 x 2 + y 2 − 2 . log 2 x − y 2 = log 2 2 − 2 x y
⇔ 3 x 2 + 2 x y + y 2 − 2 + 2 x y . log 2 x − y 2 = log 2 2 − 2 x y ⇔ 3 x − y 2 . log 2 x − y = 3 2 − 2 x y . log 2 2 − 2 x y
Xét hàm số f t = 3 t . log 2 t trên khoảng 0 ; + ∞ , có f ' t = 3 t ln 3. log 2 t + 3 t t . ln 2 > 0 ; ∀ t > 0
Suy ra f t là hàm số đồng biến trên 0 ; + ∞ mà
f x − y 2 = f 2 − 2 x y ⇒ x 2 + y 2 = 2
Khi đó:
M = 2 x 3 + y 3 − 3 x y = 2 x + y x + y 2 − 3 x y − 3 x y ⇔ 2 M = 2 x + y 2 x + y 2 − 3.2 x y − 3.2 x y 2 x + y 2 x + y 2 − 3 x + y 2 + 6 − 3 x + y 2 + 6 = 2 x + y 6 − x + y 2 − 3 x + y 2 + 6 = − 2 a 3 − 3 a 2 + 12 a + 6 ,
Với a = x + y ∈ 0 ; 4
Xét hàm số f a = − 2 a 3 − 3 a 2 + 12 a + 6 trên 0 ; 4 ,
suy ra m ax 0 ; 4 f a = 13.
Vậy giá trị lớn nhất của biểu thức M là 13 2
Đáp án B
Ta có
3 x 2 + y 2 − 2 . log 2 x − y = 1 2 1 + log 2 1 − x y ⇔ 3 x 2 + y 2 − 2 . log 2 x − y 2 = log 2 2 − 2 x y
⇔ 3 x 2 + 2 x y + y 2 − 2 + 2 x y . log 2 x − y 2 = log 2 2 − 2 x y ⇔ 3 x − y 2 . log 2 x − y = 3 2 − 2 x y . log 2 2 − 2 x y
⇔ 2 M = 2 x + y 2 x + y 2 − 3.2. x y − 3.2 x y = 2 x + y 2 x + y 2 − 3 x + y 2 + 6 − 3 x + y 2 + 6
= 2 x + y 6 − x + y 2 − 3 x + y 2 + 6 = − 2 a 3 − 3 a 2 + 12 a + 6 ,
Vậy giá trị lớn nhất của biểu thức M là 13 2
Ta có: 3x + y = 1 => y = 1 - 3x
=> M = 3x2 + y2 = 3x2 + (1-3x)2
= 3x2 + 1 - 6x + 9x2
= 12x2 - 6x + 1
= 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))
= 12.((x2 - 2. \(\frac{1}{4}x\)+ \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\))
= 12.((x-\(\frac{1}{4}\))2 + \(\frac{1}{48}\))
= 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)
=> M \(\ge\)\(\frac{1}{4}\)
Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)
Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$
$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$
Ta có: \(3x+y-1=0\)
\(\Rightarrow3x+y=1\)
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có:
\(\left(3x^2+y^2\right)\left(3+1\right)=\left[\left(\sqrt{3}x\right)^2+y^2\right]\left[\left(\sqrt{3}\right)^2+1^2\right]\ge\left(\sqrt{3}x.\sqrt{3}+y.1\right)^2\)
\(\Leftrightarrow4B\ge1^2\)
\(\Leftrightarrow B\ge\frac{1}{4}\)
Dấu = xảy ra khi \(\frac{\sqrt{3}x}{\sqrt{3}}=\frac{y}{1}\Rightarrow x=y=\frac{1}{4}\)
Vậy........
Áp dụng bất đẳng thức Cosi ta có:
1 32 32 x 29 x + 3 y ≤ 1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y
Tương tự
1 32 32 y 29 y + 3 x ≤ 1 8 2 61 y + 3 x
=> P ≤ 4 2 x + y ≤ 4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2
Vậy P min = 8 2 <=> x = y = 1
3x + y = 1
⇒ y = 1 - 3x
Ta có : M = 3x2 + y2
M = 3x2 + ( 1 - 3x)2
M = 3x2 + 1 - 6x + 9x2
M = 12x2 - 6x + 1
M = 12( x2 - 2.\(\dfrac{1}{4}\) \(+\dfrac{1}{16}+1-\dfrac{1}{16}\))
M = 12\(\left(x-\dfrac{1}{4}\right)^2\) + \(\dfrac{45}{4}\)
Do : 12\(\left(x-\dfrac{1}{4}\right)^2\) ≥ 0 ∀x
⇒ 12\(\left(x-\dfrac{1}{4}\right)^2\) + \(\dfrac{45}{4}\) ≥ \(\dfrac{45}{4}\) ∀x
⇒ MMIN = \(\dfrac{45}{4}\) ⇔ \(x=\dfrac{1}{4}\)