tìm số tự nhiên n (4n+29) chia hết cho (2n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
Ta có: n+3 chia hết cho n-1
mà: n-1 chia hết cho n-1
suy ra:[(n+3)-(n-1)]chia hết cho n-1
(n+3-n+1)chia hết cho n-1
4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
Ư(4)={1;2;4}
suy ra n-1 thuộc {1;2;4}
Ta có bảng sau:
n-1 1 2 4
n 2 3 5
Vậy n=2 hoặc n=3 hoặc n=5
\(\left(4n+6\right)⋮\left(2n+1\right)\\ \Rightarrow\left(4n+2+4\right)⋮\left(2n+1\right)\\ \Rightarrow\left[2\left(2n+1\right)+4\right]⋮\left(2n+1\right)\)
\(Mà2\left(2n+1\right)⋮\left(2n+1\right)\Rightarrow4⋮\left(2n+1\right)\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\Rightarrow n\in\left\{-2,5;-1,5;-1;0;0,5;1,5\right\}\)
Mà \(x\in N\Rightarrow x=0\)
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
a) n-1+4 chia hết cho n-1\(\Rightarrow\)n-1 thuộc Ư(4)={1;2;4)
n-1=1\(\Rightarrow\)n=2
n-1=2\(\Rightarrow\)n=3
n-1=4\(\Rightarrow\)n=5
Vậy n\(\in\){2;3;5}
b) 4n+3=2(2n-1)+5\(\Rightarrow\)2n-1 \(\in\)Ư(5)={1;5}
2n-1=1\(\Rightarrow\)n=1
2n-1=5\(\Rightarrow\)n=3
Vậy n\(\in\){1;3}
a/
\(n+3⋮n-1\)
\(\Leftrightarrow4⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(4\right)=\left\{1;-1;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;2;-3;5\right\}\)
Mà n là stn
\(\Leftrightarrow n\in\left\{0;2;5\right\}\)
b/ \(4n+3⋮2n+1\)
\(\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mà n là số tự nhiên
=> 2n + 1 là số tự nhiên
=> 2n + 1 = 1
=> 2n = 0
=> n = 0
a,
Ta có: 4n-5 chia hết cho 2n-1
=>4n-2-3 chia hết cho 2n-1
=>2.(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1
=>2n-1=Ư(3)=(-1,-3,1,3)
=>2n=(0,-2,2,4)
=>n=(0,-1,1,2)
Vậy n=0,-1,1,2
\(\left(4n+29\right)⋮\left(2n+1\right)\)
\(\Rightarrow2\left(2n+1\right)+27⋮\left(2n+1\right)\)
\(\Rightarrow\left(2n+1\right)\inƯ\left(27\right)=\left\{1;-1;3;-3;9;-9;27;-27\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{0;1;4;13\right\}\)
cảm ơn ạ !