GPT : \(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:x khác 0
Xét VT=\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=8\left(x^2+\dfrac{1}{x^2}+2\right)-8\left(x^2+\dfrac{1}{x^2}\right)=16\)
=>(x+4)2=16
<=>x+4=4 hoặc x+4=-4
<=>x=0(L) hoặc x=-8(TM)
Vậy...
`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`
`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`
Có `x>=0`
`=>1-\sqrt{x}<=1`
`=>1+\sqrt{1-\sqrt{x}}<=2`
`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`
Mà `(\sqrt{x}+2004)>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`
`=>\sqrt{x}=0`
`=>x=0`
Vậy `S={0}`
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)
\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)
\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm
a/ \(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
Điều kiện: \(\left[\begin{matrix}x\le-2\\x>1\end{matrix}\right.\)
Xét \(x\le-2\) thì ta có
\(\left(x-1\right)\left(x+2\right)+4\left(x-1\right)\sqrt{\frac{x+2}{x-1}}=12\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-4\sqrt{\left(x-1\right)\left(x+2\right)}=12\)
Đặt \(\sqrt{\left(x-1\right)\left(x+2\right)}=a\left(a\ge0\right)\) thì pt thành
\(a^2-4a-12=0\)
\(\Leftrightarrow\left[\begin{matrix}a=-2\left(l\right)\\a=6\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=6\)
\(\Leftrightarrow x^2+x-38=0\)
\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{2}+\frac{3\sqrt{17}}{2}\left(l\right)\\x=-\frac{1}{2}-\frac{3\sqrt{17}}{2}\end{matrix}\right.\)
Trường hợp x > 1 làm tương tự nhé
Đặt x - 2017 = a
Khi đó pt trên trở thành:
(a + 1)2 + a4 = 1
\(\Leftrightarrow\) a2 + 2a + 1 + a4 = 1
\(\Leftrightarrow\) a4 + a2 + 2a = 0
\(\Leftrightarrow\) a(a3 + a + 2) = 0
\(\Leftrightarrow\) a = 0 và a3 + a + 2 = 0
+) a3 + a + 2 = 0
\(\Leftrightarrow\) a3 - a + 2a + 2 = 0
\(\Leftrightarrow\) a(a2 - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) a(a + 1)(a - 1) + 2(a + 1) = 0
\(\Leftrightarrow\) (a + 1)[a(a - 1) + 2] = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}a+1=0\\a\left(a-1\right)+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[{}\begin{matrix}a=-1\\a\left(a-1\right)+2=0\end{matrix}\right.\)
+) a(a - 1) + 2 = 0
\(\Leftrightarrow\) a2 - a + 2 = 0
\(\Leftrightarrow\) a2 - a + \(\dfrac{1}{4}\) + \(\dfrac{7}{4}\) = 0
\(\Leftrightarrow\) (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm vì (a - \(\dfrac{1}{2}\))2 + \(\dfrac{7}{4}\) > 0 với mọi a)
Vậy a = 0; a = 1
Với a = 0 \(\Rightarrow\) x - 2017 = 0 \(\Leftrightarrow\) x = 2017
Với a = -1 \(\Rightarrow\) x - 2017 = -1 \(\Leftrightarrow\) x = 2016
Vậy S = {2017; 2016}
Chúc bn học tốt!
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}\)
\(=\frac{1}{x}-\frac{1}{x+3}=\frac{x+3}{x.\left(x+3\right)}-\frac{x}{x.\left(x+3\right)}\)
\(=\frac{3}{x.\left(x+3\right)}=\frac{3}{x^2+3x}\)
a)Dat \(x^2-4x+3=a;x^2-7x+6=b \Rightarrow a+b=2x^2-11x+9\)
....
\(\left|x+1\right|=\left|x\left(x+1\right)\right|\Rightarrow\left[{}\begin{matrix}x+1=x\left(x+1\right)\\x+1=-x\left(x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm1\) Vậy \(S=\left\{\pm1\right\}\)