Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}\)
\(=\frac{1}{x}-\frac{1}{x+3}=\frac{x+3}{x.\left(x+3\right)}-\frac{x}{x.\left(x+3\right)}\)
\(=\frac{3}{x.\left(x+3\right)}=\frac{3}{x^2+3x}\)

a)Dat \(x^2-4x+3=a;x^2-7x+6=b \Rightarrow a+b=2x^2-11x+9\)
....

\(\left(1\right)\Leftrightarrow2x-3x^2+11-33x=6x-4-15x^2+10x\)
\(\Leftrightarrow12x^2-47x+15=0\)
\(\Delta=47^2-4.12.15=1489,\sqrt{\Delta}=\sqrt{1489}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{47+\sqrt{1489}}{24}\\x=\frac{47-\sqrt{1489}}{24}\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{\left(x-3\right)^2-\left(x+3\right)^2}{x^2-9}=\frac{-5}{x^2-9}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x+3\right)^2=-5\)
\(\Leftrightarrow x^2-6x+9-x^2-6x-9=-5\)
\(\Leftrightarrow-12x=-5\Leftrightarrow x=\frac{5}{12}\)


ĐKXĐ:x khác 0
Xét VT=\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)\left(x^2+\dfrac{1}{x^2}+2\right)=8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=8\left(x^2+\dfrac{1}{x^2}+2\right)-8\left(x^2+\dfrac{1}{x^2}\right)=16\)
=>(x+4)2=16
<=>x+4=4 hoặc x+4=-4
<=>x=0(L) hoặc x=-8(TM)
Vậy...

ta có
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+....+\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
\(\left|x+1\right|=\left|x\left(x+1\right)\right|\Rightarrow\left[{}\begin{matrix}x+1=x\left(x+1\right)\\x+1=-x\left(x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm1\) Vậy \(S=\left\{\pm1\right\}\)