1*2+2*3+3*4+...+99*100=11/5x-1
Tìm |x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6
a) \(3\frac{1}{3}\left(3\frac{1}{4}+2x\right)=6\frac{2}{3}\)
\(3\frac{1}{3}\times3\frac{1}{4}+2x=6\frac{2}{3}\)
\(10\frac{5}{6}+2x=6\frac{2}{3}\)
\(2\times x=6\frac{2}{3}+10\frac{5}{6}=17,5\)
\(x=17,5\div2=8,75\)
Vậy x = 8,75
b) \(x-25\%x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{25}{100}x=\frac{6}{11}\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\)
\(x-\frac{1}{4}\times x=\frac{6}{11}\times1\frac{7}{12}=\frac{19}{22}\)
\(x\times x=\frac{19}{22}+\frac{1}{4}=\frac{49}{44}\)
\(\Rightarrow2x\left(x\times x\right)=\frac{49}{44}\)
\(x=\frac{49}{44}\div2=\frac{49}{88}\)
Vậy x = \(\frac{49}{88}\)
c) \(\left(4,5-2x\right)\times1\frac{4}{7}=\frac{11}{14}\)
\(4,5-2x\times1\frac{4}{7}=\frac{11}{14}\)
\(-2x\times1\frac{4}{7}=\frac{11}{14}-4,5=-3\frac{5}{7}\)
\(-2\times x=-3\frac{5}{7}\div1\frac{4}{7}=-2\frac{4}{11}\)
\(x=-2\frac{4}{11}\div\left(-2\right)=1\frac{2}{11}\)
Vậy x = \(1\frac{2}{11}\)
d) \(-3^2-|2x+3|=4\)
\(9-|2x+3|=4\)
\(-|2x+3|=4-9=-5\)
\(-|2x|=-5-|3|=-8\)
\(-|x|=-8\div2=-4\)
\(-x=4\Rightarrow x=-4\)
Vậy x = -4 (-x được xem là số đối của x)
Tính tổng: 1x2 + 2x3 + 3x4 + 4x5 +.............+ 99x100
Gọi biểu thức trên là A, ta có :
A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100
3A= 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3
3A = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)
3A = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.
3A = 99x100x101
A = 99x100x101 : 3
A = 333300
\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)
\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)
\(\Rightarrow x=1\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
A = 10 + 11 + 12 + ....+ 100
Xét dãy số: 10; 11; 12; ...;100
Dãy số trên là dãy số cách đều với khoảng cách là: 11 - 10 = 1
Số số hạng của dãy số trên là: (100 - 10) : 1 + 1 = 91
Tổng A là: A = (100 + 10) x 91 : 2 = 50005
B = 10 + 12+ ...+ 200
Xét dãy số: 10; 12; ...;200
Dãy số trên là dãy số cách đều với khoảng cách là:
12 - 10 = 2
Số số hạng của dãy số trên là:
(200 - 10) : 2 + 1 = 96 (số hạng)
Tổng B là:
B = (200 + 10) x 96: 2 = 10080