Cho tứ giác ABCD có diện tích bằng 32 cm2, tổng độ dài các cạnh AB,BD,DC=16cm. Tính BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


AB=BM
nên \(S_{QAB}=S_{QBM}\)
DA=AQ
=>\(S_{BDA}=S_{BAQ}\)
=>\(S_{QAM}=2\cdot S_{ABD}\)
Tương tự, ta được: \(S_{MBN}=2\cdot S_{ABC};S_{NCP}=2\cdot S_{BCD};S_{PDQ}=2\cdot S_{ADC}\)
=>\(S_{MNPQ}=5\cdot S_{ABCD}=300\left(cm^2\right)\)

b) Ta có :
\(S_{ABC}=\frac{1}{2}S_{ADC}\)
- Có chiều cao bằng chiều cao hình thang
- Đáy AB = 1/2 DC
Mặt khác vì hai tam giác có chung đáy AC nên chiều cao hạ từ B xuống O sẽ bằng 1/2 chiều cao hạ từ D xuống O
Từ đó ta có thể suy ra : BO = 1/2 DO (1)
Ta có : \(S_{AOB}=\frac{1}{2}S_{AOD}\)
- Chung cao hạ từ A xuống O
- Đáy BO = 1/2 DO (1)
Hay \(S_{AOB}=\frac{1}{3}S_{ABD}\)
\(\Rightarrow S_{AOB}=\frac{1}{3}\cdot\frac{1}{3}=\frac{1}{9}S_{ABCD}\)

Vì ABCD có đường chéo vuông góc nên
SABCD = 1 2 BD. AC
=> AC = 2 S A B C D B D = 2.56 7 = 16 cm.
Đáp án cần chọn là: D