một người đi từ A đến B. 1/3 quãng đường đầu người đó đi với vận tốc v1, 2/3 thời gian còn lại đi với vận tốc v2. quãng đường cuối đi với vận tốc v3. tính vận tốc trung bình của người đó trên cả quãng đường?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(s_1=\dfrac{1}{3}s=v_1t_1\Rightarrow t_1=\dfrac{s}{3v_1}\) (1)
Do \(t_2=2t_3\) nên \(\dfrac{s_2}{v_2}=2.\dfrac{s_3}{v_3}\) (2)
Ta có: s2 + s3 = \(\dfrac{2}{3}s\) (3)
Từ (2) và (3) => \(\dfrac{s_3}{v_3}=t_3=\dfrac{2s}{3\left(2v_2+v_3\right)}\) (4)
=> \(\dfrac{s_2}{v_2}=t_2=\dfrac{4s}{3\left(2v_2+v_3\right)}\) (5)
Từ (1), (4), (5), ta có vận tốc tb của ng đó trên cả quãng đường:
\(v_{tb}=\dfrac{s}{t_1+t_2+t_3}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{2}{3\left(2v_2+v_3\right)}+\dfrac{4}{3\left(2v_2+v_3\right)}}\)
= \(\dfrac{3v_1\left(2v_2+v_3\right)}{6v_1+2v_2+v_3}\)
\(\dfrac{1}{3}\) quãng đường đầu đi với vận tốc V1 : V1 = \(\dfrac{1}{3}\).S = V1
Quãng đường còn lại đi với vận tốc V2 và V3= \(\dfrac{2}{3}\)S = V2.t2 +V3.t3
Ta có: t2= (\(\dfrac{2}{3}\)) . (t2 + t3) => t3= \(\dfrac{1}{2}\). t2
=> \(\dfrac{2}{3}\).S = V2.t2 + \(\dfrac{1}{2}\) . V3.t2 = ( V2 + \(\dfrac{1}{2}\). V3.).t2
Vận tốc trung bình: V = \(\dfrac{s}{t}\) = \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+t_2+t_3}\)
= \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+\dfrac{1}{2}t_2}\)
Ta thấy: \(\dfrac{2}{3}\)S = 2.(\(\dfrac{1}{3}\)S) (=) (V2 + \(\dfrac{1}{2}\) . V3 ). t2 = 2. V1 . t1
=> [V1.t1 + (V2 + \(\dfrac{1}{2}\) . V3). t2] = 3.V1.t1 và t2= \(\dfrac{\left(2.V_1.t_1\right)}{V_2+\dfrac{1}{2}.V_3}\)
Thay vào vận tốc trung bình, khử t1, quy đồng mẫu, cuối cùng ra được: v=\(\dfrac{\left[3.V_1\left(V_2+\dfrac{1}{2}.V_3\right)\right]}{\left[3.V_1+V_2+\dfrac{1}{2}.V_3\right]}\)
hay v= \(\dfrac{\left[3.V_1\left(2.V_2+V_3\right)\right]}{\left[6.V_1+2.V_2+V_3\right]}\)
Bạn tính vận tốc trung bình người dó đi trong 2/3 qđ còn lại là 16
Từ đó bạn tính vận tốc trung bình
Chúc bạn học tốt nếu chưa rõ thì mình làm củ thể cho
Gọi: S1 là 1/3 quãng đg đi với vận tốc v1 , với thời gian t1
S2 là quãng đg đi với vận tốc v2, Với thời gian t2
S3 là quãng đg đi với vận tốc v3, Với thời gian t3
S là quãng đg AB
Theo bài ra, Ta có: S1=1/3S=v1.t1⇒t1=S/3v1 (1)
Ta có: t2=S2/v2 , t3=S3/v3
Vì t2=2.t3 ⇒ S2/v2 = 2.S3/v3 (2)
Ta lại có: S2 + S3 = 2/3.S (3)
Từ (2)(3) ⇒ S3/v3= t3 = 2S/3(2v2+v3) (4)
⇒ S2/v2 = t2 = 4S/3(2v2+v3) (5)
Vận tốc trung bình là:
vtb = S/t1+t2+t3
Từ (1)(4)(5) ta có:
vtb = 1 / [1/3v1 + 2/3(2v2+v3) + 4/3(2v2+v3)] = 3v1(2v2+v3) / 6v1+2v2+v3
Vậy ...
Ta chia quãng đường từ A đến B làm sáu phần mỗi phần gọi là: \(s\left(km\right)\)
Cả quãng đường AB là: \(6s\left(km\right)\)
Gọi t là thời gian người đó đi trong \(\dfrac{1}{3}\) quãng đường
Thời gian người đó đi trên quãng đường AB là: \(3t\left(h\right)\)
Trong \(\dfrac{1}{3}\) thời gian người đó đi với vận tốc v2 :
\(s_2=\dfrac{1}{3}\cdot6s=2s\left(km\right)\)
Quãng đường mà người đó đi với vận tốc v3 :
\(s_3=\dfrac{1}{2}\cdot6s=3s\left(km\right)\)
Mà: \(s_1+s_2+s_3=s_{AB}\)
Quãng đường mà người đó đi được với vận tốc 20km/h:
\(s_1=s_{AB}-s_2-s_3=6s-2s-3s=s\left(km\right)\)
Giá trị của 1 trong 6 phần quãng đường AB là:
\(s=20\cdot\dfrac{1}{3}\cdot3t=20t\left(km\right)\)
Ta có tổng quãng đường đi là:
\(s_1+s_2+s_3=6s\left(km\right)\)
Tổng thời gian mà người đó đi là:
\(t_1+t_2+t_3=3t\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường:
\(v_{tb}=\dfrac{s_{AB}}{t}=\dfrac{6s}{3t}=\dfrac{2s}{t}\left(km/h\right)\)
Mà: \(s=20t\left(km\right)\) thay vào ta có:
\(v_{tb}=\dfrac{2\cdot20t}{t}=2\cdot20=40\left(km/h\right)\)
Vận tốc v2 không thể nhỏ hơn giá trị của v1 là 20 km/h.
chắc bạn học lý nên cũng biết nếu hai đoạn đường bằng nhau thì ta có công thức
vtb=2.v1.vtb'/(v1+vtb')
trong đó vtb' là vân tốc trung bình của nửa đoạn đường sau
theo đề bài thì vtb'=(s2+s3)/(t2+t3)
vtb'=(v2.t2+v3.t3)/(t2+t3)
do t2=t3 nên
vtb'=t2(v2+v3)/2t2
vtb'=(v2+v3)/2
thế vào pt trên kia được vtb=2v1(v2+v3)/(2v1+v2+v3)
chép của minh hay sao mà giống không sai 1 từ thế???