K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

NV
2 tháng 12 2021

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

19 tháng 3 2020

Ta có: (x-1)(x+1)-(x+2)2=3

<=> x2-1-x2-4x-4=0

<=> -4x=8

<=> x=-2

Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6

Ta có:

6 x (-6)-5m=3+3m(-6)

<=> -5m+18m=39

<=> 13m=39

<=. m=3

Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3

13 tháng 1 2017

Ta có:

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)

\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)

Ta lại có

\(6x-5m=3+3mx\)

\(\Leftrightarrow x\left(6-3m\right)=3+5m\)

\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)

Vì pt này có nghiệm gấp 3 lần pt trên nên

\(\frac{3+5m}{6-3m}=6\)

\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)

a) Thay m=2 vào phương trình, ta được:

\(2^2+4\cdot3-3=2^2+x\)

\(\Leftrightarrow x+4=4+12-3\)

\(\Leftrightarrow x+4=13\)

hay x=9

Vậy: Khi m=2 thì x=9

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Lời giải:

Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$

a) Với $m=2$ thì $x=4.2-3=5$

Vậy $x=5$

b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$

c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$

 

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

17 tháng 3 2023

\(\left(2m-1\right)x-4m+3=0\)

Thay \(x=\dfrac{1}{2}\) vào pt trên :

\(\left(2m-1\right).\dfrac{1}{2}-4m+3=0\)

\(\Leftrightarrow m-\dfrac{1}{2}-4m+3=0\)

\(\Leftrightarrow-3m+\dfrac{5}{2}=0\)

\(\Leftrightarrow-3m=-\dfrac{5}{2}\)

\(\Leftrightarrow m=\dfrac{5}{6}\)

Vậy \(m=\dfrac{5}{6}\)

NV
18 tháng 4 2021

Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết

Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.

7 tháng 2 2022

a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)

b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)

c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)

Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)

Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)

7 tháng 2 2022

a, Thay m = -3 vào pt trên ta được 

\(x^2-2x-4=0\)

\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)

pt có 2 nghiệm pb 

\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)

b, Để pt có nghiệm kép 

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)

 

a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)

Để phương trình có nghiệm thì -4m+32>=0

=>-4m>=-32

hay m<=8

b: Theo Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Leftrightarrow36-2\left(m+1\right)=20\)

=>2(m+1)=16

=>m+1=8

hay m=7(nhận)

 

26 tháng 5 2022

`a)` Ptr có nghiệm`<=>\Delta' >= 0`

                             `<=>(-3)^2-(m+1) >= 0`

                             `<=>9-m-1 >= 0<=>m <= 8`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`

Ta có:`x_1 ^2+x_2 ^2=20`

`<=>(x_1+x_2)^2-2x_1.x_2=20`

`<=>6^2-2(m+1)=20`

`<=>36-2m-2=20`

`<=>2m=14<=>m=7` (t/m)