Tìm giá trị của m để pt: 6x - 5m = 3 + 3mx có nghiệm số gấp ba nghiệm số của pt: (x + 1)(x - 1) - (x + 2)2 = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)
Gọi a là nghiệm chung của 2 pt
\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)
\(\Rightarrow3a+3m=0\Rightarrow a=-m\)
Thay vào 2 pt ban đầu:
\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
Ta có: (x-1)(x+1)-(x+2)2=3
<=> x2-1-x2-4x-4=0
<=> -4x=8
<=> x=-2
Để phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3 hay x=-6
Ta có:
6 x (-6)-5m=3+3m(-6)
<=> -5m+18m=39
<=> 13m=39
<=. m=3
Vậy với m=3 thì phương trình 6x-5=3+3mx có nghiệm gấp 3 lần phương trình (x+1)(x-1)-(x+2)2=3
Ta có:
\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)^2=3\)
\(\Leftrightarrow4x+8=0\Leftrightarrow x=2\)
Ta lại có
\(6x-5m=3+3mx\)
\(\Leftrightarrow x\left(6-3m\right)=3+5m\)
\(\Leftrightarrow x=\frac{3+5m}{6-3m}\)
Vì pt này có nghiệm gấp 3 lần pt trên nên
\(\frac{3+5m}{6-3m}=6\)
\(\Leftrightarrow23m=33\Leftrightarrow m=\frac{33}{23}\)
a) Thay m=2 vào phương trình, ta được:
\(2^2+4\cdot3-3=2^2+x\)
\(\Leftrightarrow x+4=4+12-3\)
\(\Leftrightarrow x+4=13\)
hay x=9
Vậy: Khi m=2 thì x=9
Lời giải:
Không biết bạn có viết sai đề không...........
PT $\Leftrightarrow x=4m-3$
a) Với $m=2$ thì $x=4.2-3=5$
Vậy $x=5$
b) Tương ứng với mỗi $m\in\mathbb{R}$ PT đều có duy nhất 1 nghiệm $x=4m-3$
c) Tương ứng với mỗi $m\in\mathbb{Z}$ PT đều có nghiệm nguyên $x=4m-3$
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
Cho pt: (2m-1)x-4m+3=0 ( m là tham số) Tìm giá trị của m để pt nhận x=1/2 là nghiệm Em cần gấp ạ!!!!
\(\left(2m-1\right)x-4m+3=0\)
Thay \(x=\dfrac{1}{2}\) vào pt trên :
\(\left(2m-1\right).\dfrac{1}{2}-4m+3=0\)
\(\Leftrightarrow m-\dfrac{1}{2}-4m+3=0\)
\(\Leftrightarrow-3m+\dfrac{5}{2}=0\)
\(\Leftrightarrow-3m=-\dfrac{5}{2}\)
\(\Leftrightarrow m=\dfrac{5}{6}\)
Vậy \(m=\dfrac{5}{6}\)
Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết
Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.
a. Thay m=-3 ta có: \(x^2-2x-3-1=0\Leftrightarrow x^2-2x-4=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{matrix}\right.\)
b. Ta có, để phương trình có nghiệm kép thì: \(\Delta=0\Leftrightarrow2^2-4.1.\left(m-1\right)=0\Leftrightarrow m=2\)
c. Để phương trình có 2 nghiệm phân biệt thì:\(\Delta>0\Leftrightarrow2^2-4.1.\left(m-1\right)>0\Leftrightarrow m< 2\)
Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề ta có: \(x_1=2x_2\)\(\Rightarrow3x_2=2\Rightarrow x_2=\dfrac{2}{3}\Rightarrow x_1=\dfrac{4}{3}\Rightarrow m=\dfrac{17}{9}\)(TM)
a, Thay m = -3 vào pt trên ta được
\(x^2-2x-4=0\)
\(\Delta'=\left(-1\right)^2-\left(-4\right)=5>0\)
pt có 2 nghiệm pb
\(x_1=2-\sqrt{5};x_2=2+\sqrt{5}\)
b, Để pt có nghiệm kép
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m=0\Leftrightarrow m=2\)
a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)
Để phương trình có nghiệm thì -4m+32>=0
=>-4m>=-32
hay m<=8
b: Theo Vi-et,ta được:
\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=20\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Leftrightarrow36-2\left(m+1\right)=20\)
=>2(m+1)=16
=>m+1=8
hay m=7(nhận)
`a)` Ptr có nghiệm`<=>\Delta' >= 0`
`<=>(-3)^2-(m+1) >= 0`
`<=>9-m-1 >= 0<=>m <= 8`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`
Ta có:`x_1 ^2+x_2 ^2=20`
`<=>(x_1+x_2)^2-2x_1.x_2=20`
`<=>6^2-2(m+1)=20`
`<=>36-2m-2=20`
`<=>2m=14<=>m=7` (t/m)