Tìm x \(\in\)Z sao cho:
a)\(\frac{x-2}{15}=\frac{9}{5}\)
b)\(\frac{2-x}{16}=\frac{-4}{x-2}\)
c)\(\frac{14}{x}=\frac{x-1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x-2}{15}=\frac{9}{5}\Rightarrow5.\left(x-2\right)=9.15\)
\(\Rightarrow5x-10=135\)
\(\Rightarrow5x=145\)
\(\Rightarrow x=29\)
b) \(\frac{2-x}{16}=\frac{-4}{x-2}\Rightarrow\left(2-x\right).\left(x-2\right)=\left(-4\right).16\)
\(\Rightarrow4x-x^2-4=-64\)
\(\Rightarrow4x-x^2=-60\)
Lập bảng rồi tính ra
c) \(\frac{14}{x}=\frac{x-1}{4}\Rightarrow x.\left(x-1\right)=14.4\)
\(\Rightarrow x.\left(x-1\right)=56\)
Vì 56 = 8 x 7
\(\Rightarrow x=8\)
Câu c) còn có thêm \(x=-7\) nữa nha MMS_Hồ Khánh Châu vì \(x\inℤ\) mà :')
a)
\(\begin{array}{l}x.\frac{{14}}{{27}} = \frac{{ - 7}}{9}\\x = \frac{{ - 7}}{9}:\frac{{14}}{{27}}\\x = \frac{{ - 7}}{9}.\frac{{27}}{{14}}\\x = \frac{{ - 3}}{2}\end{array}\)
Vậy \(x = \frac{{ - 3}}{2}\).
b)
\(\begin{array}{l}\left( {\frac{{ - 5}}{9}} \right):x = \frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right):\frac{2}{3}\\x = \left( {\frac{{ - 5}}{9}} \right).\frac{3}{2}\\x = \frac{{ - 5}}{6}\end{array}\)
Vậy \(x = \frac{{ - 5}}{6}\).
c)
\(\begin{array}{l}\frac{2}{5}:x = \frac{1}{{16}}:0,125\\\frac{2}{5}:x = \frac{1}{{16}}:\frac{1}{8}\\\frac{2}{5}:x = \frac{1}{{16}}.8\\\frac{2}{5}:x = \frac{1}{2}\\x = \frac{2}{5}:\frac{1}{2}\\x = \frac{2}{5}.2\\x = \frac{4}{5}\end{array}\)
Vậy \(x = \frac{4}{5}\)
d)
\(\begin{array}{l} - \frac{5}{{12}}x = \frac{2}{3} - \frac{1}{2}\\ - \frac{5}{{12}}x = \frac{4}{6} - \frac{3}{6}\\ - \frac{5}{{12}}x = \frac{1}{6}\\x = \frac{1}{6}:\left( { - \frac{5}{{12}}} \right)\\x = \frac{1}{6}.\frac{{ - 12}}{5}\\x = \frac{{ - 2}}{5}\end{array}\)
Vậy \(x = \frac{{ - 2}}{5}\).
Chú ý: Khi trình bày lời giải bài tìm x, sau khi tính xong, ta phải kết luận.
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
â) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(=\left(\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}\right)=\left(\frac{x^2+16}{x^2-16}\right):\frac{x^2+16}{x+2}\)
\(=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(A=\left(\frac{x}{x+4}+\frac{4}{x-4}\right):\frac{x^2+16}{x+2}\)
\(A=\frac{x\left(x-4\right)+4\left(x+4\right)}{\left(x+4\right)\left(x-4\right)}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2-4x+4x+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x^2+16}{x^2-16}.\frac{x+2}{x^2+16}\)
\(A=\frac{x+2}{x^2-16}\left(đpcm\right)\)
a) \(\dfrac{x-2}{15}=\dfrac{9}{5}\)
\(\Leftrightarrow x-2=\dfrac{9\times15}{5}\)
\(\Leftrightarrow x-2=27\)
\(\Leftrightarrow x=29\)
Vậy ...............
b) \(\dfrac{2-x}{16}=\dfrac{-4}{x-2}\)
\(\Leftrightarrow\dfrac{2-x}{16}=\dfrac{4}{2-x}\)
\(\Leftrightarrow\left(2-x\right)^2=64\)
\(\Leftrightarrow\left(2-x\right)^2-64=0\)
\(\Leftrightarrow\left(2-x\right)^2-8^2=0\)
\(\Leftrightarrow\left(2-x-8\right)\left(2-x+8\right)=0\)
\(\Leftrightarrow\left(-x-6\right)\left(-x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-6=0\\-x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=6\end{matrix}\right.\)
Vậy ..............
c) \(\dfrac{14}{x}=\dfrac{x-1}{4}\)
\(\Leftrightarrow x\left(x-1\right)=56\)
\(\Leftrightarrow x^2-x-56=0\)
\(\Leftrightarrow x^2+7x-8x-56=0\)
\(\Leftrightarrow x\left(x+7\right)-8\left(x+7\right)=0\)
\(\Leftrightarrow\left(x+7\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=8\end{matrix}\right.\)
Vậy ....................
a) \(\dfrac{x-2}{15}=\dfrac{9}{5}\)
\(\Leftrightarrow\left(x-2\right).5=9.15\)
\(\Leftrightarrow5x-10=45\)
\(\Leftrightarrow5x=55\)
\(\Leftrightarrow x=11\) ( t/m x thuộc Z )
Vậy....