K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

Mình sửa đề chút nha!\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

Giải:

Ta có: \(b^2=a\cdot c\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\cdot\left(a+c\right)}{c\cdot\left(a+c\right)}=\dfrac{a}{c}=VP\\ \RightarrowĐPCM\)

b^2=ac

=>b/a=c/b=k

=>b=ak; c=bk=ak*k=ak^2

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+a^2k^2}{a^2k^2+a^2k^4}=\dfrac{1}{k^2}\)

\(\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)

=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?

 
NV
16 tháng 1 2024

Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)

\(\Rightarrow a=k^2.k.a^4\)

\(\Rightarrow a=k^3a^4\)

\(\Rightarrow\left(ka\right)^3=1\)

\(\Rightarrow ka=1\)

\(\Rightarrow a=\dfrac{1}{k}\) (1)

Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)

\(\Rightarrow c=\dfrac{1}{k}\) (2)

Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)

\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)

(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)

TH1: \(a=b=c\)

\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)

Th2: \(a=c=-b\)

\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)

19 tháng 8 2021

Hình như thiếu đề bn ơi

19 tháng 8 2021

Thiếu đề thật nhưng thôi mk giải đc rồi😅😅😅

5 tháng 10 2018

Bài 1:

Theo bất đẳng thức Cauchy, ta có:

\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2}{b+c}.\dfrac{b+c}{4}}=2\sqrt{\dfrac{a^2}{4}}=a\) (1)

Chứng minh tương tự:

\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) (2)

\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\) (3)

Từ (1), (2) và (3) suy ra:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b+c}{4}+\dfrac{c+a}{4}+\dfrac{a+b}{4}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c\)

5 tháng 10 2018

Bài 2:

Theo bđt Cauchy ta có:

\(1+\dfrac{1}{a}=\dfrac{a+1}{a}=\dfrac{2a+b+c}{a}\ge\dfrac{2a+2\sqrt{bc}}{a}\ge\dfrac{2\left(a+\sqrt{bc}\right)}{a}\ge\dfrac{4\sqrt{a\sqrt{bc}}}{a}\)

\(\Rightarrow1+\dfrac{1}{a}\ge4\sqrt[4]{\dfrac{bc}{a^2}}\)

Chứng minh tương tự:

\(1+\dfrac{1}{b}\ge4\sqrt[4]{\dfrac{ca}{b^2}}\)

\(1+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{ab}{c^2}}\)

Nhân vế theo vế 3 bđt trên ta được:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge4^3\sqrt[4]{\dfrac{\left(abc\right)^2}{a^2b^2c^2}}\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\left(dpcm\right)\)

31 tháng 8 2017

BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm

11 tháng 6 2023

\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)

\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)

----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)

Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)

17 tháng 3 2023

tịt