Bài 1 : Tồn tại hay không một số tư nhiên có ba chữ số abc có chữ số hàng trăm nhỏ hơn hàng đơn vị, mà hiệu cba -abc là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là abc (đk : \(0< a;c< 10;0\le a\le9\left(a;b;c\inℕ\right)\)
Ta có a < c ; a + c = b
Lại có cba - abc = 792
=> 100c + 10b + a - (100a + 10b + c) = 792
=> 99c - 99a = 792
=> 99(c - a) = 792 (2)
=> c - a = 8
=> c = 8 + a
Vì a khác 0
Khi a = 1 => c = 8 + 1 = 9 (tm)
Khi a > 1 => c > 8 + 1 = 9 (loại) (Vì c < 10)
Thay a = 1 ; c = 9 vào 99(c - a)
=> 99(a - c) = 99 x 8 = 792 = (2)
=> b = 0
=> abc = 901
1) ta có A = n^2+n+1 = n^2+n+n-n-1 = n(n+1)+1(n+1)+1(n+1) = (n+1)(n+1)+1 = (n+1)^2 +1
(n+1)^2+1=0
=> n+1=1 =>n+1=-1
=>n=0 =>n=-2(loại)
vậy n=0
Gọi số cần tìm là \(X=\overline{abc}\)
Theo đề, ta có: a+c=9 và \(\overline{abc}-\overline{cba}=99\) và X chia hết cho 18
=>a+c=9 và 100a+10b+c-100c-10b-a=99 và X chia hết cho 18
=>a+c=9 và 99a-99c=99 và X chia hết cho 18
=>a+c=9 và a-c=1 và X chia hết cho 18
=>a=5 và c=4 và X chia hết cho 18
=>b=0
=>Số cần tìm là 504
\(S=\overline{abc}+\overline{acb}+\overline{bac}+\overline{bca}+\overline{cab}+\overline{cba}\), ta có \(a,b,c\ne0\).
\(S=100a+10b+c+100a+10c+b+...+100c+10b+a\)
\(S=222\left(a+b+c\right)\)
Ta thấy \(222=2.3.37\) nên muốn \(S\) là số chính phương thì \(a+b+c=2^x.3^y.37^z\) với \(x,y,z\) là các số tự nhiên lẻ. Do đó \(x,y,z\ge1\) hay \(a+b+c\ge222\), vô lí.
Vậy không tồn tại số tự nhiên có 3 chữ số \(a,b,c\) thỏa mãn S là số chính phương.
mà Lê Song Phương ơi
mình cần bạn giải chi tiết ra đoạn từ dòng số 2 xuống dòng số 3 mình giải được:
2x(aaa+bbb+ccc)
2x111x(a+b+c)
222x(a+b+c)
đk bạn
Bài 1
a0b = ab x 7
a x 100 + b = ( a x 10 + b ) x7
a x 100 + b = a x 10 x 7 + b x 7
Cùng bớt đi b
a x 100 = a x 70 + b x 6
Cùng bớt đi a x 70
a x 30 = b x 6
Cùng chia cho 6
a x 5 = b x 1
=>a = 1 ; b = 5
Vậy số đó là 15
2 bài kia bạn tự giải nha , mk lười lắm :)))))
cau hoi nay la cau hoi co 3 chu so chu khong hai la 2chu so