K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2018

Áp dụng bất đẳng thức AM - GM, ta có:

\(S=\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)

\(\ge3\sqrt[3]{\dfrac{1}{\left(x-1\right)^2}\times\dfrac{1}{\left(2-x\right)^2}\times\dfrac{1}{\left(x-1\right)\left(2-x\right)}}\)

\(=\dfrac{3}{\left(x-1\right)\left(x-2\right)}=\dfrac{3}{-x^2+3x-2}\)

\(-x^2+3x-2=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

nên \(S\ge\dfrac{3}{\dfrac{1}{4}}=12\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{\left(x-1\right)^2}=\dfrac{1}{\left(2-x\right)^2}=\dfrac{1}{\left(x-1\right)\left(2-x\right)}\\x-\dfrac{3}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{3}{2}\left(\text{ nhận }\right)\)

Vậy \(Min_S=12\Leftrightarrow x=\dfrac{3}{2}\)

NV
26 tháng 8 2021

\(P\ge\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+\dfrac{4}{\left(x-2+3-x\right)^2}=\dfrac{1}{2}\left(\dfrac{1}{x-2}+\dfrac{1}{3-x}\right)^2+4\)

\(P\ge\dfrac{1}{2}\left(\dfrac{4}{x-4+3-x}\right)^2+4=12\)

Dấu "=" xảy ra khi \(x-2=3-x\Rightarrow x=\dfrac{5}{2}\)

11 tháng 5 2023

Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)

11 tháng 5 2023

Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có 

\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)

\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)

    \(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)

 

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

Chọn B

NV
22 tháng 4 2022

\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)

\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)

\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)

\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)

\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)

12 tháng 1 2021

c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2+2x+2}{x+1}\right)^2=\left(x+1\right)^2+\left(x+1+\dfrac{1}{x+1}\right)^2=2\left(x+1\right)^2+\dfrac{1}{\left(x+1\right)^2}+2\ge_{AM-GM}2\sqrt{2}+2\).

Đẳng thức xảy ra khi \(2\left(x+1\right)^2=\dfrac{1}{\left(x+1\right)^2}\Leftrightarrow x=\pm\sqrt{\dfrac{1}{2}}-1\).

12 tháng 1 2021

b) \(g\left(x\right)=\dfrac{\left(x+2\right)\left(x+3\right)}{x}=\dfrac{x^2+5x+6}{x}=\left(x+\dfrac{6}{x}\right)+5\ge_{AM-GM}2\sqrt{6}+5\).

Đẳng thức xảy ra khi x = \(\sqrt{6}\).