Rút gọn biểu thức sau:
xn - 1 (x + y) - y (xn - 1 + yn - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x – y) + y(x – y)
= x.x – x.y + y.x – y.y
= x2 – xy + xy – y2
= x2 – y2 + (xy – xy)
= x2 – y2
a: ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b: Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y^n\)
\(=x^n-y^n\)
a) x(x – y) + y(x – y) = x2 – xy + yx – y2 = x2 – xy + xy – y2 = x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 ) = xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn = xn - yn
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
xn - 1(x + y) - y(xn - 1 + yn - 1)
= xn - x + y - yxn - y2 n - 1
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
=\(x^n+x^{n-1}y-x^{n-1}y-y^n\)
=\(x^n-y^n\)
\(x\left(x-y\right)+y\left(x-y\right)\)
\(=x.x-x.y+y.x-y.y\)
\(=x^2-xy+yx-y^2\)
=\(x^2-y^2\)
cho biểu thức A = (x+y) (x-1)+x(2-x-y)+1
a, rút gọn biểu thức
b, tính giá trị biểu thức khi x=1 y=1/2
xn - 1 (x + y) - y (xn - 1 + yn - 1) \(=x^n+x^{n-1}y-x^{n-1}y-y^n=x^n-y^n\)
xn-1(x+y)-y(xn-1+yn-1)
= xn+xn-1y-yxn-1-yn
=xn+(xn-1y-yxn-1)-yn
=xn-yn