Cho tam giác ABC cân tại A. Kẻ BH vuông góc AC (H thuộc AC), D là một điểm trên tia đối của tia BC, DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh: BH = DF - DE bằng hai cách (lưu ý cách hai tính bằng công thức diện tích). Vẽ hình nữa nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo nhé
Kẻ DK vuông góc với BH
Xét từ giác DKHE có góc K = góc E = góc H = 90 độ => tứ giác DKHE là HCN
=> DE = KH
DK//AC => góc KDB = góc ACB(đồng vị)
Mà góc ACB = góc ABC (tam giác ABC cân tại A)
=> góc KDB = góc FBC
Xét tam giác BDF và tam giác DBK có
Góc BFD = góc DKB = 90 độ
BD chung
góc DBF = góc BDK
=> tam giác BFD = tam giác DBK (g.c.g)
=> BK = DF
Ta có BH = BK + KH
Mà BK = DF, KH = DE
=> BH = DE + DF (đpcm)
Kẻ DK vuông góc BH
Tứ giác DKFE có K=H=E = 90 => DKFE là hình chữ nhật
=> DE = KH (1)
Có DK//AC ( cùng vuông góc với BH ) => góc KDB=ACB
mà ABC=ACB ( tam giác ABC cân )
=> góc KDB = ABC
Xét tam giác BDF và DBK
có F=K=90
góc KDB=ABC
cạnh BD chung
=> tam giác BDF = DBK (ch-gn)
=> BK=DF (2)
có BK+KH=BH (3)
từ (1), (2) và (3) => DE+DF=BH
a, xet tam giac ABD va tam giac ACD co : AD chung
AB = AC do tam giac ABC can tai A (gt)
goc BAD = goc CAD do AD la phan giac cua goc A (gt)
=> tam giac ABD = tam giac ACD (c - g - c)
=> BD = CD (dn)
xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...
goc B = goc C do tam giac ABC can tai A(gt)
=> tam giac BED = tam giac CFD (ch - gn)
=> DE = DF (dn)
b, cm o cau a
c, tam giac ABD = tam giac ACD (cau a)
=> goc ADC = goc ADB (dn)
goc ADC + goc ADB = 180 (kb)
=> goc ADC = 90
co DB = DC (cau a)
=> AD la trung truc cua BC (dn)