K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 9 2021

Với mọi a;b;c;d ta luôn có:

\(\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2+\left(d-\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow a^2-a+\dfrac{1}{4}+b^2-b+\dfrac{1}{4}+c^2-c+\dfrac{1}{4}+d^2-d+\dfrac{1}{4}\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+1\ge a+b+c+d\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d=\dfrac{1}{2}\)

19 tháng 7 2017

dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi

19 tháng 7 2017

tương đương too

22 tháng 11 2016

Xét BĐT phụ  \(\frac{a^3}{a^2+b^2}\ge\frac{2a-b}{2}\)\(\Leftrightarrow b\left(a-b\right)^2\ge0\)

Tương tự ta có:

\(\frac{b^3}{b^2+c^2}\ge\frac{2b-c}{2};\frac{c^3}{c^2+d^2}\ge\frac{2c-d}{2};\frac{d^3}{d^2+a^2}\ge\frac{2d-a}{2}\)

Cộng lại theo vế ta có:

\(VT\ge\frac{2a-b}{2}+\frac{2b-c}{2}+\frac{2c-d}{2}+\frac{2d-a}{2}\)

\(=\frac{2a-b+2b-c+2c-d+2d-a}{2}=\frac{a+b+c+d}{2}\)

Vậy BĐT đc chứng minh

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

7 tháng 6 2020

ae vứt 1 ab ra nha

16 tháng 2 2021

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ac+4c^2\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

Bất đẳng thức đúng vậy ta có điều phải chứng minh

20 tháng 7 2017

\(a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2\right)\ge2\left(ac+ad+bc+bd\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2+2d^2-2ac-2ad-2bc-2bd\ge0\)\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\ge0\)\(\Leftrightarrow\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)Luôn đúng với mọi \(a;b;c;d\in Z\)

21 tháng 7 2017

Cảm ơn bạn nhiều lắm <3

Có thể giải bằng các bất đẳng thức phụ được không bạn?

27 tháng 4 2018

\(a^2+b^2+c^2+d^2+1\ge a+b+c+d\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+1-a-b-c-d\ge0\)

\(\Leftrightarrow\left(a^2-a+\dfrac{1}{4}\right)+\left(b^2-b+\dfrac{1}{4}\right)+\left(c^2-c+\dfrac{1}{4}\right)+\left(d^2-d+\dfrac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}\right)^2+\left(b-\dfrac{1}{2}\right)^2+\left(c-\dfrac{1}{2}\right)^2+\left(d-\dfrac{1}{2}\right)^2\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

1 tháng 5 2018

Áp dụng bđt AM-GM ta có:

\(\dfrac{a^2}{4}+b^2\ge2\sqrt{\dfrac{a^2b^2}{4}}=\dfrac{2ab}{2}=ab\)

\(\dfrac{a^2}{4}+c^2\ge2\sqrt{\dfrac{a^2c^2}{4}}=\dfrac{2ac}{2}=ac\)

\(\dfrac{a^2}{4}+d^2\ge2\sqrt{\dfrac{a^2d^2}{4}}=\dfrac{2ad}{2}=ad\)

\(\dfrac{a^2}{4}+1\ge2\sqrt{\dfrac{a^2}{4}}=\dfrac{2a}{2}=a\)

Cộng theo vế: \(a^2+b^2+c^2+d^2+1\ge ab+ac+ad+a=a\left(b+c+d+1\right)\)Dấu "=" xảy ra khi: \(a=2;b=c=d=1\)

1 tháng 5 2018

\(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4\ge4ab+4ac+4ad+4a\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4-4ab-4ac-4ad-4a\ge0\)

\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-2ac+4c^2\right)+\left(a^2-4ad^2+4d^2\right)+\left(a^2-4a+4\right)\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2\right)^2\ge0\) ( luôn đúng)

Dấu "=" xảy ra khi: a = 2; b = c = d = 1