K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

Vì a,b,c là độ dài 3 cạnh tam giác => a,b,c là các số dương

Áp dụng BĐT AG-MG , ta có :

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân theo từng vế ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{ab.bc.ca}=8abc\)

Dấu "=" xảy ra khi a = b = c .

Mà : \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\) ( đề bài )

Vậy tam giác trên là tam giác đều .

16 tháng 10 2017

Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c

\(a+b\ge2\sqrt{ab}\)    ;  \(b+c\ge2\sqrt{bc}\);   \(c+a\ge\sqrt{ca}\)

Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi a = b = c => tam giác đó đều

10 tháng 8 2015

Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0

Áp dụng BĐT co si cho 2 số dương ta có:

a+b\(\ge2\sqrt{ab}\)

b+c\(\ge2\sqrt{bc}\)

a+c\(\ge2\sqrt{ac}\)

=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)

Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c

Mà theo đề bài (a+b)(b+c)(c+a)=8abc

=>a=b=c=>tam giác đó là tam giác đều

6 tháng 1 2017

co cach khac khong , minh chua hoc bat dang thuc cosi

7 tháng 5 2016

Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:

a+b>=2x căn(ab)

b+c>= 2x căn(bc)

c+a>= 2x căn(ac)

Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc

Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều

21 tháng 7 2015

a;b;c là 3 cạnh của tam giác => a; b; c dương

Với a; b dương ta có:  \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)

Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)

=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc 

Dấu = xảy ra khi a = b = c

=> tam giác có 3 cạnh là a; b; c là tam giác đều

NV
29 tháng 1 2021

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\)

Tương tự: \(b+c\ge2\sqrt{bc}\) ; \(c+a\ge2\sqrt{ca}\)

Nhân vế với vế:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\) hay tam giác đã cho là tam giác đều

12 tháng 8 2022

Giáo viên ơi,cho em hỏi là còn cách nào khác ngoài bất đẳng thức cosi ko ạ?

 

6 tháng 5 2021

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:

\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\)    (1)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:

\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\)    (2)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:

\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\)    (3)

Từ (1), (2) và (3)

\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))

6 tháng 5 2021

Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều

23 tháng 2 2015

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

20 tháng 12 2016

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2=2ab+2bc+2ac

<=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

<=>(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0

<=>(a-b)^2+(b-c)^2+(c-a)^2=0

=>a-b=b-c=c-a=0

=>a=b;b=c;c=a

=>a=b=c

=>tam giác abc là tam giác đều

20 tháng 11 2015

\(\Leftrightarrow2\left(p-a\right).2\left(p-b\right).2\left(p-c\right)\le abc\)

\(\Leftrightarrow\left(2p-2a\right)\left(2p-2b\right)\left(2p-2c\right)\le abc\)

\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)

Đặt \(a+b-c=x;\text{ }b+c-a=y;\text{ }c+a-b=z\)

Thì \(a=\frac{x+z}{2};\text{ }b=\frac{y+x}{2};\text{ }c=\frac{z+y}{2}\)

Nên cần chứng minh: 

\(xyz\le\frac{1}{8}\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Điều này là hiển nhiên khi ta áp dụng bđt Côsi cho VP.

Vậy ta có đpcm.

20 tháng 11 2015

sorry, em mới học lớp 6 thui à