Tim x E Z
â) x + 2 là U ( 3x -7 )
b) x -5 la B ( x + 1 )
c) 2x- 1 la U ( 5x 4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a) \(2-\left|\frac{3}{2}x-\frac{1}{4}\right|=\left|-\frac{5}{4}\right|\)
\(\Leftrightarrow\left|\frac{3}{2}x-\frac{1}{4}\right|=\frac{3}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x-\frac{1}{4}=\frac{3}{4}\\\frac{3}{2}x-\frac{1}{4}=-\frac{3}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x=1\\\frac{3}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{1}{3}\end{cases}}\)
b) \(\left|\frac{7}{8}x+\frac{5}{6}\right|-\left|\frac{1}{2}x+5\right|=0\)
\(\Leftrightarrow\left|\frac{7}{8}x+\frac{5}{6}\right|=\left|\frac{1}{2}x+5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}x+\frac{5}{6}=\frac{1}{2}x+5\\\frac{7}{8}x+\frac{5}{6}=-\frac{1}{2}x-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3}{8}x=\frac{25}{6}\\\frac{11}{8}x=-\frac{35}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{100}{9}\\x=-\frac{140}{33}\end{cases}}\)
c) \(\left|7-x\right|=5x+1\)
\(\Leftrightarrow\orbr{\begin{cases}7-x=5x+1\\x-7=5x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}6x=6\\4x=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
d) \(\left|x-y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}}\)
e) \(\left|\left|2x-1\right|+\frac{1}{2}\right|=\frac{4}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|+\frac{1}{2}=\frac{4}{5}\\\left|2x-1\right|+\frac{1}{2}=-\frac{4}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left|2x-1\right|=\frac{3}{10}\\\left|2x-1\right|=-\frac{13}{10}\left(vl\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=\frac{3}{10}\\2x-1=-\frac{3}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{20}\\x=\frac{7}{20}\end{cases}}\)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)