Giả sử : \(x=\frac{a}{m}\), \(y=\frac{b}{m}\)( a , b , m ∈ Z , m > 0 ) và x < y . Hãy chứng tỏ rằng : nếu chọn \(z=\frac{a+b}{2m}\)thì x < z < y
Lưu ý : Đừng cop mạng nhé vì tớ đọc không hiểu mấy bài trên mạng đó '-'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
Ta có x < y ; m > 0
=> \(\frac{a}{m}< \frac{b}{m}\)
=> a < b (vì m > 0)
Lại có x = \(\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}< \frac{a+b}{2m}=y\)(vì a < b nên a + a < a + b)
=> x < z (1)
Mặt khác \(y=\frac{b}{m}=\frac{2b}{2m}=\frac{b+b}{2m}>\frac{a+b}{2m}=z\)(vì b > a nên b +b > b + a)
=> y > z (2)
Từ (1) và (2) => x < z < y (đpcm)
Câu hỏi của Trần Khởi My - Toán lớp 7 - Học toán với OnlineMath
Tham khảo nhé
biết đường mà cảm ơn đi, hahaha:
theo đề bài x và y đã cho suy ra: a=x.m và b=y.m. Nên ta thay vào z sẽ có a+b/2m = x.m+y.m=2m
x=a/m suy ra x cũng bằng 2a/2m nên bằng 2xm/2m...Mà x.m+y.m (dòng trên) lớn hơn 2xm do y>x nên ta được z>x
Tương tự với y
Vậy x < z < y (đpcm) haha ♥
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
Vì x<y nên a<b. Ta có \(x=\frac{a}{m}=\frac{2a}{2m},y=\frac{b}{m}=\frac{2b}{2m}\)
Chọn \(z=\frac{2a+1}{2m}\).Do 2a<2a+1 nên x<z(1)
Do a<b nên a+1 < b suy ra 2a+1< 2b
TA có 2a+1< 2a+2< 2b nên 2a+1<2b do đó z<y(2)
Từ (1),(2) suy ra x<z<y
Ta có: x<y => \(\frac{a}{m}< \frac{b}{m}\)<=> a<b
Lại có:\(x=\frac{a}{m}=\frac{2a}{2m};y=\frac{b}{m}=\frac{2b}{2m}\)
vì a<b (a, b thuộc Z) <=> a+1 =< b hay 2a+2 =< 2b
=> 2a <2a+1<2a+2=<2b hay 2a<2a+1<2b
do đó: \(\frac{2a}{2m}< \frac{2+1}{2m}< \frac{2b}{2m}\)
=> x<y<z
Nguồn: loigiaihay.com
ta có: x < y hay a/m < b/m => a < b
so sánh x,y,z ta chuyển chúng cùng mẫu: 2m
x = a/m = 2a / 2m và y = b/m = 2b / 2m và Z = (a + b) / 2m
* Mà a < b :
=> a + a < b + a
hay 2a < b + a
=> x < Z (1)
* mà a < b:
=> a + b < b + b
hay a + b < 2b
=> Z < y (2)
từ (1) và (2) => nếu chọn Z = (a + b) / 2m thì ta có x < Z < y
Phương pháp giải - Xem chi tiết
+) Sử dụng tính chất: Nếu a,b,c∈Za,b,c∈Z và a<ba<b thì a+c<b+c.a+c<b+c.
Lời giải chi tiết
Theo đề bài ta có x=amx=am; y=bmy=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0)
Vì x<yx<y nên ta suy ra a<b.a<b.
Ta có : x=2a2mx=2a2m, y=2b2my=2b2m;z=a+b2mz=a+b2m
Vì a<b⇒a+a<a+b⇒2a<a+b.a<b⇒a+a<a+b⇒2a<a+b.
Do 2a<a+b2a<a+b nên x<z(1)x<z(1)
Vì a<b⇒a+b<b+b⇒a+b<2b.a<b⇒a+b<b+b⇒a+b<2b.
Do a+b<2ba+b<2b nên z<y(2)z<y(2)
Từ (1) và (2) ta suy ra x<z<y.
Bài làm:
Ta có: x=am,y=bmx=am,y=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0) và x<yx<y
⇒a<b⇒a<b
⇒a+a<a+b⇔2a<a+b⇒a+a<a+b⇔2a<a+b
Cũng do a<b⇒a+b<b+b⇔a+b<2ba<b⇒a+b<b+b⇔a+b<2b
Từ hai điều trên suy ra 2a<a+b<2b2a<a+b<2b
Mà x=2a2m,y=2b2m,z=a+b2mx=2a2m,y=2b2m,z=a+b2m (m>0)(m>0)
⇒2a2m<a+b2m<2b2m⇒2a2m<a+b2m<2b2m
Vậy x<z<yx<z<y (đpcm).
Cách của chj mik nha :
Theo đề bài ta có x =
, y =( a, b, m ∈ Z, m > 0)
Vì x < y nên ta suy ra a< b
Ta có : x =
, y =; z =
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)