\(x^n\left(x^{n+1}+y^n\right)-y^n\left(x^n+y^{n-1}\right)\))
Giúp mik bài này gấp nha, cảm ơn mn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{x\cdot\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot3}+...+\frac{1}{x\cdot\left(x+1\right)}-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(=1-\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{\left(x+1\right)\cdot\left(x+2\right)}=\frac{2019}{2019}-\frac{2018}{2019}=\frac{1}{2019}\)
Đến đây bn tự tính nhé !!
rút gọn hở bạn?
đkxđ: x>0 ; x≠1
\(S=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(x-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\dfrac{x-1}{\sqrt{x}}\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\right)\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{x-1}\)
\(\dfrac{2\sqrt{x}}{\sqrt{x}}+\dfrac{2\cdot2\sqrt{x}}{\sqrt{x}}=\dfrac{6\sqrt{x}}{\sqrt{x}}=6\)
\(a^{\left(2n+6\right)\left(3n+9\right)}=1\)
=>(2n+6)(3n+9)=0
=>n=-3
a/ Để hàm số này là hàm bậc nhất thì
\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)
Các câu còn lại làm tương tự nhé bạn
Lời giải:
Ta có: \(xy+yz+xz=1\)
\(\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+yz+xz=(x+y)(x+z)\\ y^2+1=y^2+xy+yz+xz=(y+z)(y+x)\\ z^2+1=z^2+xy+yz+xz=(z+x)(z+y)\end{matrix}\right.\)
Do đó:
\(\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=\sqrt{\frac{(y+z)(y+x)(z+x)(z+y)}{(x+y)(x+z)}}=\sqrt{(y+z)^2}=y+z\)
\(\Rightarrow x\sqrt{\frac{(y^2+1)(z^2+1)}{x^2+1}}=x(y+z)\)
Hoàn toàn tt:
\(y\sqrt{\frac{(z^2+1)(x^2+1)}{y^2+1}}=y(x+z)\); \(z\sqrt{\frac{(x^2+1)(y^2+1)}{z^2+1}}=z(x+y)\)
Do đó:
\(A=x(y+z)+y(x+z)+z(x+y)=2(xy+yz+xz)=2\)
S=1+4+7+..+n
Tổng S có số số hạng là \(\frac{\left(n-1\right)}{3}+1=\frac{n+2}{3}\)
Tổng S có giá trị là
\(S=\frac{\left(n+1\right)}{2}.\frac{n+2}{3}=\frac{\left(n+1\right)\left(n+2\right)}{6}\)
Câu 1: Có sai đề không thế ạ :(
Câu 2: Ta có \(\left|x+\dfrac{15}{19}\right|\ge0\) với mọi x
\(\Rightarrow\left|x+\dfrac{15}{19}\right|-1\ge-1\)
Vậy GTNN của A là -1
Dấu "=" xảy ra khi \(\left|x+\dfrac{15}{19}\right|=0\Rightarrow x+\dfrac{15}{19}=0\Rightarrow x=-\dfrac{15}{19}\)
a: \(=12x^{n+2}+4x^2-8x^{n+2}\)
\(=4x^{n+2}+4x^2\)
b: \(=2x^{2n}+4x^ny^n+2y^{2n}-4x^ny^n-2y^{2n}\)
\(=2x^{2n}\)
c: \(=\left(x^{3n}-y^{3n}\right)\left(x^{3n}+y^{3n}\right)\)
\(=x^{6n}-y^{6n}\)
d: \(=4^n\cdot4-3\cdot4^n=4^n\)
ta có :
\(x^n\left(x^{n+1}+y^n\right)-y^n\left(x^n+y^{n-1}\right)=x^{2n+1}+x^ny^n-x^ny^n-y^{2n-1}=x^{2n+1}-y^{2n-1}\)